Multi-objective optimization of lithium-ion battery model using genetic algorithm approach

2014 ◽  
Vol 270 ◽  
pp. 367-378 ◽  
Author(s):  
Liqiang Zhang ◽  
Lixin Wang ◽  
Gareth Hinds ◽  
Chao Lyu ◽  
Jun Zheng ◽  
...  
Author(s):  
G. SRINIVAS ◽  
A. K. VERMA ◽  
A. SRIVIDYA ◽  
SANJAY KUMAR KHATTRI

Technical Specifications define the limiting conditions of operation, maintenance and surveillance test requirements for the various Nuclear Power plant systems in order to meet the safety requirements to fulfill regulatory criteria. These specifications impact even the economics of the plant. The regulatory approach addresses only the safety criteria, while the plant operators would like to balance the cost criteria too. The attempt to optimize both the conflicting requirements presents a case to use Multi-objective optimization. Evolutionary algorithms (EAs) mimic natural evolutionary principles to constitute search and optimization procedures. Genetic algorithms are a particular class of EA's that use techniques inspired by evolutionary biology such as inheritance, mutation, natural selection and recombination (or cross-over). In this paper we have used the plant insights obtained through a detailed Probabilistic Safety Assessment with the Genetic Algorithm approach for Multi-objective optimization of Surveillance test intervals. The optimization of Technical Specifications of three front line systems is performed using the Genetic Algorithm Approach. The selection of these systems is based on their importance to the mitigation of possible accident sequences which are significant to potential core damage of the nuclear power plant.


Author(s):  
Abdullah-Al Mamun ◽  
Iyswarya Narayanan ◽  
Di Wang ◽  
Anand Sivasubramaniam ◽  
Hosam K. Fathy

This paper presents a Lithium-ion battery control framework to achieve minimum health degradation and electricity cost when batteries are used for datacenter demand response (DR). Demand response in datacenters refers to the adjustment of demand for grid electricity to minimize electricity cost. Utilizing batteries for demand response will reduce the electricity cost but might accelerate health degradation. This tradeoff makes battery control for demand response a multi-objective optimization problem. Current research focuses only on minimizing the cost of demand response and does not capture battery transient and degradation dynamics. We address this multi-objective optimization problem using a second-order equivalent circuit model and an empirical capacity fade model of Lithium-ion batteries. To the best of our knowledge, this is the first study to use a nonlinear Lithium-ion battery and health degradation model for health-aware optimal control in the context of datacenters. The optimization problem is solved using a differential evolution (DE) algorithm and repeated for different battery pack sizes. Simulation results furnish a Pareto front that makes it possible to examine tradeoffs between the two optimization objectives and size the battery pack accordingly.


2014 ◽  
Vol 494-495 ◽  
pp. 246-249
Author(s):  
Cheng Lin ◽  
Xiao Hua Zhang

Based on the genetic algorithm (GA), a novel type of parameters identification method on battery model was proposed. The battery model parameters were optimized by genetic optimization algorithm and the other parameters were identified through the hybrid pulse power characterization (HPPC) test. Accuracy and efficiency of the battery model were validated with the dynamic stress test (DST). Simulation and experiment results shows that the proposed model of the lithium-ion battery with identified parameters was accurate enough to meet the requirements of the state of charge (SoC) estimation and battery management system.


2016 ◽  
Vol 7 ◽  
pp. 258-269 ◽  
Author(s):  
A. Mamun ◽  
I. Narayanan ◽  
D. Wang ◽  
A. Sivasubramaniam ◽  
H.K. Fathy

Sign in / Sign up

Export Citation Format

Share Document