Multi-objective optimization design of thermal management system for lithium-ion battery pack based on Non-dominated Sorting Genetic Algorithm II

2020 ◽  
Vol 164 ◽  
pp. 114394 ◽  
Author(s):  
Tao Deng ◽  
Yan Ran ◽  
Yanli Yin ◽  
Ping Liu
Author(s):  
Nengsheng Bao ◽  
Wei Li ◽  
Ma Chong ◽  
Fan Yuchen ◽  
Li Tuyan

Abstract The new energy electric vehicle, which takes clean electric energy as the main driving force, has no pollutants and exhaust emissions during its operation. And has a higher energy utilization ratio than the fuel locomotive. Therefore, electric vehicles have been widely developed in recent years. The maximum temperature and temperature consistency of battery pack in electric vehicle have great influence on the life and safety of battery. In this paper, the thermal management system of lithium battery pack was taken as the research object. The temperature distribution and uniformity of battery pack under different heat dissipation conditions were analyzed based on computational fluid dynamics (CFD). The multi-objective optimization method of battery pack thermal management system was carried out by combining sur-rogate model with fast non-dominated sorting genetic algorithm (NSGA-II). The maximum temperature of the battery pack obtained from candidate point 1 is 310.72K, which is 4.99K lower than the initial model temperature, and the temperature standard deviation is 0.76K, with a reduction rate of 51.9%. Experiment results showed that maximum difference between the optimized and experimental value of the maximum temperature is 0.8K, and the error was within 1K. Therefore, the multi-objective optimization method proposed in this paper has high accuracy.


2014 ◽  
Vol 6 ◽  
pp. 852712 ◽  
Author(s):  
Yong Liu ◽  
Shichun Yang ◽  
Bin Guo ◽  
Cheng Deng

A new design of thermal management system for lithium ion battery pack using thermoelectric coolers (TECs) is proposed. Firstly, the 3D thermal model of a high power lithium ion battery and the TEC is elaborated. Then the model is calibrated with experiment results. Finally, the calibrated model is applied to investigate the performance of a thermal management system for a lithium ion battery pack. The results show that battery thermal management system (BTMS) with TEC can cool the battery in very high ambient temperature. It can also keep a more uniform temperature distribution in the battery pack than common BTMS, which will extend the life of the battery pack and may save the expensive battery equalization system.


Sign in / Sign up

Export Citation Format

Share Document