A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3− as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance

2015 ◽  
Vol 274 ◽  
pp. 1024-1033 ◽  
Author(s):  
Chao Su ◽  
Xiaomin Xu ◽  
Yubo Chen ◽  
Yu Liu ◽  
Moses O. Tadé ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5463
Author(s):  
Liliya Dunyushkina ◽  
Anastasiya Pavlovich ◽  
Adelya Khaliullina

The effect of nitric acid treatment on the electrochemical performance of porous Pt electrodes deposited on YSZ (abbreviation from yttria stabilized zirconia) electrolyte was investigated. Two identical symmetrical Pt/YSZ/Pt cells with porous Pt electrodes were fabricated, after which the electrodes of the first cell were kept as sintered, while those of the second cell were impregnated with HNO3 solution. The electrochemical behavior of the prepared electrodes was studied using impedance spectroscopy and cyclic voltammetry. Significant reduction of the polarization resistance of the HNO3-treated electrodes was revealed. The observed enhancement of the electrochemical performance of porous Pt electrodes was assumed to be caused by adsorption of NOx-species on YSZ and Pt surfaces, which promotes oxygen molecules dissociation and transport to the triple phase boundary by the “relay-race” mechanism. The obtained results allow for considering the nitric acid treatment of a porous Pt electrode as an effective way of electrode activation.


1999 ◽  
Vol 575 ◽  
Author(s):  
R. N. Basu ◽  
C. A. Randall ◽  
M. J. Mayo

ABSTRACTElectrophoretic deposition (EPD) was explored as an inexpensive route for fabricating the 8mol% yttria stabilized zirconia electrolyte in solid oxide fuel cells (SOFCs). Normally, deposition of particulate ceramic powders onto a sintered porous surface yields a non uniform coating which, after sintering, results in porosity, surface roughness and cracking in the coating. To overcome this problem, the present study used a fugitive graphite interlayer between the porous air electrode supported (AES) cathode tube (doped-LaMnO3) and the deposited zirconia film. By this approach, a fairly dense green coating (˜ 60%) was obtained, which yielded a smooth surface and pore-free microstructure after sintering. Preliminary results on the effect of a fugitive interlayer on the unfired (green) and fired zirconia coatings are discussed.


Sign in / Sign up

Export Citation Format

Share Document