An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

2016 ◽  
Vol 331 ◽  
pp. 553-565 ◽  
Author(s):  
Lee Wai Chong ◽  
Yee Wan Wong ◽  
Rajprasad Kumar Rajkumar ◽  
Dino Isa
2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Tiezhou Wu ◽  
Yi Ding ◽  
Yushan Xu

Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV), from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC), which is hybrid energy storage system (Li-SC HESS), working together with internal combustion engine (ICE) to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP) algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.


Author(s):  
Yashwant Joshi, Et. al.

A stand-alone renewable based microgrid (MG) performance with a hybrid energy storage system has been examined in this work. Stand-alone MG system mainly consists of a solar photovoltaic (PV) and permanent magnet synchronous generator (PMSG) based wind system. The hybrid energy storage system is based on Ni-Metal- Hydride (NiMH) battery and a supercapacitor (SC).  The paper's primary goal is to propose an artificial neural network (ANN) based control strategy for charging/discharging control of Ni-Metal- Hydride battery & supercapacitor. The proposed maximum power tracking techniques (MPPT) include perturb and observe (P& O) algorithm for solar PV system while optimum torque (OT) MPPT for PMSG based wind turbine. The ANN-based control mechanism can maintain the DC bus voltage constant and trigger the supercapacitor to limit the battery current when the battery charging/ discharging current reached its threshold value. The proposed model responds quickly to intermittent nature PV-wind power generation or load power variation.


Sign in / Sign up

Export Citation Format

Share Document