Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency

2018 ◽  
Vol 379 ◽  
pp. 68-73 ◽  
Author(s):  
Lifeng Zhang ◽  
Jiajia Song ◽  
Yi Liu ◽  
Xiaoyan Yuan ◽  
Shouwu Guo
2015 ◽  
Vol 8 (12) ◽  
pp. 3629-3636 ◽  
Author(s):  
Wenwu Li ◽  
Huiqiao Li ◽  
Zhijuan Lu ◽  
Lin Gan ◽  
Linbo Ke ◽  
...  

Layer structured GeP5 is firstly developed as an anode material for LIB, it delivers a reversible capacity of 2300 mA h g−1 with a very high initial coulombic efficiency of 95%.


2018 ◽  
Vol 6 (36) ◽  
pp. 17437-17443 ◽  
Author(s):  
Jonghyun Choi ◽  
Won-Sik Kim ◽  
Kyeong-Ho Kim ◽  
Seong-Hyeon Hong

Tin phosphide (Sn4P3) has emerged as an anode for sodium ion batteries (SIBs) due to its high reversible capacity and low redox potential.


Nanoscale ◽  
2018 ◽  
Vol 10 (37) ◽  
pp. 18010-18018 ◽  
Author(s):  
Yimo Xiang ◽  
Zhigao Yang ◽  
Shengping Wang ◽  
Md. Shahriar A. Hossain ◽  
Jingxian Yu ◽  
...  

Pseudocapacitance, which is the storage of charge based on continuous and fast reversible redox reactions at the surface of the electrodes, is commonly observed in transition metal oxide based LIB anodes.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


Small ◽  
2021 ◽  
pp. 2102894
Author(s):  
Lin Sun ◽  
Yanxiu Liu ◽  
Jun Wu ◽  
Rong Shao ◽  
Ruiyu Jiang ◽  
...  

2019 ◽  
Vol 3 (9) ◽  
pp. 2361-2365 ◽  
Author(s):  
Xiaoyong Dou ◽  
Ming Chen ◽  
Jiantao Zai ◽  
Zhen De ◽  
Boxu Dong ◽  
...  

Silicon (Si) has been regarded as a promising next-generation anode material to replace carbon-based materials for lithium ion batteries (LIBs).


2015 ◽  
Vol 3 (34) ◽  
pp. 17713-17720 ◽  
Author(s):  
Li Liu ◽  
Taeseup Song ◽  
Hyungkyu Han ◽  
Hyunjung Park ◽  
Juan Xiang ◽  
...  

Porous LiMnPO4/C composite nanofibers show excellent electrochemical performance including a high reversible capacity of 112.7 mA h g−1 and stable cycle retention of 95% after 100 cycles.


2018 ◽  
Vol 54 (86) ◽  
pp. 12214-12217 ◽  
Author(s):  
Xiangyang Zhou ◽  
Yongpeng Ren ◽  
Juan Yang ◽  
Jing Ding ◽  
Jiaming Zhang ◽  
...  

The initial coulombic efficiency of Si anodes is effectively improved via a Cu assisted Mg reduction.


Sign in / Sign up

Export Citation Format

Share Document