reversible redox
Recently Published Documents


TOTAL DOCUMENTS

438
(FIVE YEARS 115)

H-INDEX

41
(FIVE YEARS 8)

ACS Nano ◽  
2022 ◽  
Author(s):  
Yuehua Cao ◽  
Youqi Zhu ◽  
Changliang Du ◽  
Xinyu Yang ◽  
Tianyu Xia ◽  
...  
Keyword(s):  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 540
Author(s):  
Nguyen Quang Khuyen ◽  
Ngoc Tuan Nguyen ◽  
Rudolf Kiefer

Controllable linear actuation of polypyrrole (PPy) is the envisaged goal where only one ion dominates direction (here anions) in reversible redox cycles. PPy with polyethylene oxide (PEO) doped with dodecylbenzenesulfonate forms PPy-PEO/DBS films (PPy-PEO), which are applied in propylene carbonate (PC) solvent with electrolytes such as 1-ethyl-2,3-dimethylimidazolium trifluoromethanesulfonate (EDMICF3SO3), sodium perchlorate (NaClO4) and tetrabutylammonium hexafluorophosphate (TBAPF6) and compared in their linear actuation properties with pristine PPy/DBS samples. PPy-PEO showed for all applied electrolytes that only expansion at oxidation appeared in cyclic voltammetric studies, while pristine PPy/DBS had mixed-ion actuation in all electrolytes. The electrolyte TBAPF6-PC revealed for PPy-PEO best results with 18% strain (PPy/DBS had 8.5% strain), 2 times better strain rates, 1.8 times higher electronic conductivity, 1.4 times higher charge densities and 1.5 times higher diffusion coefficients in comparison to PPy/DBS. Long-term measurements up to 1000 cycles at 0.1 Hz revealed strain over 4% for PPy-PEO linear actuators, showing that combination of PPy/DBS with PEO gives excellent material for artificial muscle-like applications envisaged for smart textiles and soft robotics. FTIR and Raman spectroscopy confirmed PEO content in PPy. Electrochemical impedance spectroscopy (EIS) of PPy samples revealed 1.3 times higher ion conductivity of PPy-PEO films in PC solvent. Scanning electron microscopy (SEM) was used to investigate morphologies of PPy samples, and EDX spectroscopy was conducted to determine ion contents of oxidized/reduced films.


Author(s):  
Xiubei Yang ◽  
Chao Lin ◽  
Diandian Han ◽  
Gaojie Li ◽  
Chao Huang ◽  
...  

Covalent organic frameworks (COFs) with reversible redox-active sites showed great potential application in constructing electrode materials of lithium-ion batteries (LIBs), whereas their further application is largely restricted by the poor...


2022 ◽  
Author(s):  
Goutam Kumar Lahiri ◽  
Sanjib Panda ◽  
Kuo-Wei Huang ◽  
Aditi Singh ◽  
Sanchaita Dey

Metal complexes exhibiting multiple reversible redox states have drawn continuing research interest due to their electron reservoir features. In this context, the present article described ruthenium-acac complexes (acac=acetylacetonate) incorporating redox-active...


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Swetapadma Praharaj ◽  
Dibyaranjan Rout

Abstract Constructing a novel nanocomposite structure based on Co3O4 is of the current interest to design and develop efficient electrochemical capacitors. The capacitive performance of MoO3@Co3O4 nanocomposite is compared with pristine Co3O4 nanoparticles, both of them being synthesized by hydrothermal technique. A BET surface area of ~41 m2g-1 (almost twice that of Co3O4 )and average pore size of 3.6 nm is found to be suitable for promoting Faradaic reactions in the nanocomposite. Electrochemical measurements conducted on both samples predict capacitive behavior with quasi-reversible redox reactions. MoO3@Co3O4 nanocomposite is capable of delivering a superior specific capacitance of 1248 Fg-1 at 0.5 Ag-1 along with notable stability of 92% even after 2000 cycles of charge-discharge and Coulombic efficiency approaching 100% at 10 Ag-1. The outstanding results obtained in this work assure functional adequacy of MoO3@Co3O4 nanocomposite in fabricating high-performance electrochemical capacitors.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4831
Author(s):  
Sergiusz Napierała ◽  
Kacper Muras ◽  
Grzegorz Dutkiewicz ◽  
Monika Wałęsa-Chorab

The benzimidazole-based ligand containing polymerizable styrene group has been prepared via condensation of picolinaldehyde derivative containing styrene moiety and benzimidazole-based hydrazine. The ligand reacted with iron(II) tetrafluoroborate and iron(II) trifluoromethanesulfonate giving red-brown complexes of Fe(II) ions of formula [FeL2]X2, where X = CF3SO3− (1) or BF4− (2). Reductive electropolymerization was used to obtain a thin layer of the polymeric complex, poly-1. Further investigation of electrochemical properties of the compound by cyclic voltammetry showed two quasi-reversible redox processes assigned to electrooxidation and electroreduction of the polymer. Spectroelectrochemical measurements confirmed that the polymer undergoes the color changes during oxidation and reduction process. The polymer in its neutral state (Fe(II)) is yellow and it exhibits absorption band at 370 nm, after oxidation to Fe(III) state absorption band shifts to 350 nm and the polymer is almost colorless. While the metal ions are reduced to Fe(I) absorption band at around 410 nm has been observed and the polymer changed its color to intense yellow. The stability of the polymer during multiple oxidation/reduction cycles has also been investigated.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4267
Author(s):  
Kuo-Hui Wu ◽  
Ryota Sakamoto ◽  
Hiroaki Maeda ◽  
Eunice Jia Han Phua ◽  
Hiroshi Nishihara

We developed an efficient and convenient electrochemical method to synthesize π-conjugated redox metal-complex linear polymer wires composed of azobenzene-bridged bis(terpyridine)metal (2-M, M = Fe, Ru) units covalently immobilized on glassy carbon (GC). Polymerization proceeds by electrochemical oxidation of bis(4′-(4-anilino)-2,2′:6′,2″-terpyridine)metal (1-M) in a water–acetonitrile–HClO4 solution, affording ultralong wires up to 7400 mers (corresponding to ca. 15 μm). Both 2-Fe and 2-Ru undergo reversible redox reactions, and their redox behaviors indicate remarkably fast redox conduction. Anisotropic hetero-metal-complex polymer wires with Fe and Ru centers are constructed via stepwise electropolymerization. The cyclic voltammograms of two hetero-metal-complex polymer wires, GC/[2-Fe]–[2-Ru] (3) and GC/[2-Ru]–[2-Fe] (4), show irreversible redox reactions with opposite electron transfer characteristics, indicating redox diodelike behavior. In short, the present electrochemical method is useful to synthesize polymer wire arrays and to integrate functional molecules on carbon.


Sign in / Sign up

Export Citation Format

Share Document