Proposal of ultra-high-efficiency zero-emission power generation systems

2020 ◽  
Vol 448 ◽  
pp. 227459 ◽  
Author(s):  
Yasuharu Kawabata ◽  
Tatsuya Nakajima ◽  
Kazuo Nakamura ◽  
Toru Hatae ◽  
Yuya Tachikawa ◽  
...  
2014 ◽  
Vol 27 ◽  
pp. 28-41 ◽  
Author(s):  
V. Spallina ◽  
M.C. Romano ◽  
P. Chiesa ◽  
F. Gallucci ◽  
M. van Sint Annaland ◽  
...  

2013 ◽  
Vol 37 ◽  
pp. 662-670 ◽  
Author(s):  
Vincenzo Spallina ◽  
Matteo C. Romano ◽  
Paolo Chiesa ◽  
Giovanni Lozza

Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


2020 ◽  
Vol 20 (3) ◽  
pp. 817-826
Author(s):  
Shengshan Li ◽  
Ming Li ◽  
Liangliang Liu

Many practical photovoltaic power generation systems with higher output voltage levels rely on photovoltaic DC boost converters with high frequency and high efficiency, which performance directly affect the conversion efficiency of photovoltaic power generation systems. This paper investigates a high-frequency and high-efficiency photovoltaic DC boost converter, which adopts the Boost full-bridge isolation circuit topology with active clamps. The conductance increment method is used as the maximum power point tracking algorithm. The small signal models of its power circuit and control circuit are established to obtain the system model and analyze its stability. The simulation results indicate that the ripple coefficient of output current is less than 3%, and the ripple coefficient of output voltage is less than 5%, which meets the stability requirements.


Sign in / Sign up

Export Citation Format

Share Document