scholarly journals Correlating capacity fade with film resistance loss in fast charging of lithium-ion battery

2021 ◽  
Vol 485 ◽  
pp. 229360
Author(s):  
Prashant Gargh ◽  
Abhishek Sarkar ◽  
Yu Hui Lui ◽  
Sheng Shen ◽  
Chao Hu ◽  
...  
Author(s):  
Tanvir R. Tanim ◽  
Zhenzhen Yang ◽  
Andrew M. Colclasure ◽  
Parameswara R. Chinnam ◽  
Paul Gasper ◽  
...  

2015 ◽  
Vol 15 (4) ◽  
pp. 301 ◽  
Author(s):  
Y.Y. Mamyrbayeva ◽  
R.E. Beissenov ◽  
M.A. Hobosyan ◽  
S.E. Kumekov ◽  
K.S. Martirosyan

<p>There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery  increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO<sub>2</sub> cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses.</p>


Author(s):  
Zachary Salyer ◽  
Matilde D'Arpino ◽  
Marcello Canova

Abstract Aging models are necessary to accurately predict the SOH evolution in lithium ion battery systems when performing durability studies under realistic operatings, specifically considering time-varying storage, cycling, and environmental conditions, while being computationally efficient. This paper extends existing physics-based reduced-order capacity fade models that predict degradation resulting from the solid electrolyte interface (SEI) layer growth and loss of active material (LAM) in the graphite anode. Specifically, the physics of the degradation mechanisms and aging campaigns for various cell chemistries are reviewed to improve the model fidelity. Additionally, a new calibration procedure is established relying solely on capacity fade data and results are presented including extrapolation/validation for multiple chemistries. Finally, a condition is integrated to predict the onset of lithium plating. This allows the complete cell model to predict the incremental degradation under various operating conditions, including fast charging.


Sign in / Sign up

Export Citation Format

Share Document