scholarly journals Charge and Discharge Behaviour of Li-Ion Batteries at Various Temperatures Containing LiCoO2 Nanostructured Cathode Produced by CCSO

2015 ◽  
Vol 15 (4) ◽  
pp. 301 ◽  
Author(s):  
Y.Y. Mamyrbayeva ◽  
R.E. Beissenov ◽  
M.A. Hobosyan ◽  
S.E. Kumekov ◽  
K.S. Martirosyan

<p>There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery  increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO<sub>2</sub> cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses.</p>

2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


Author(s):  
Mohammed Rabah ◽  
Eero Immonen ◽  
Sajad Shahsavari ◽  
Mohammad-Hashem Haghbayan ◽  
Kirill Murashko ◽  
...  

Understanding battery capacity degradation is instrumental for designing modern electric vehicles. In this paper, a Semi-Empirical Model for predicting the Capacity Loss of Lithium-ion batteries during Cycling and Calendar Aging is developed. In order to redict the Capacity Loss with a high accuracy, battery operation data from different test conditions and different Lithium-ion batteries chemistries were obtained from literature for parameter optimization (fitting). The obtained models were then compared to experimental data for validation. Our results show that the average error between the estimated Capacity Loss and measured Capacity Loss is less than 1.5% during Cycling Aging, and less than 2% during Calendar Aging. An electric mining dumper, with simulated duty cycle data, is considered as an application example.


Author(s):  
Zachary Salyer ◽  
Matilde D'Arpino ◽  
Marcello Canova

Abstract Aging models are necessary to accurately predict the SOH evolution in lithium ion battery systems when performing durability studies under realistic operatings, specifically considering time-varying storage, cycling, and environmental conditions, while being computationally efficient. This paper extends existing physics-based reduced-order capacity fade models that predict degradation resulting from the solid electrolyte interface (SEI) layer growth and loss of active material (LAM) in the graphite anode. Specifically, the physics of the degradation mechanisms and aging campaigns for various cell chemistries are reviewed to improve the model fidelity. Additionally, a new calibration procedure is established relying solely on capacity fade data and results are presented including extrapolation/validation for multiple chemistries. Finally, a condition is integrated to predict the onset of lithium plating. This allows the complete cell model to predict the incremental degradation under various operating conditions, including fast charging.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3295 ◽  
Author(s):  
Yongquan Sun ◽  
Saurabh Saxena ◽  
Michael Pecht

Derating is widely applied to electronic components and products to ensure or extend their operational life for the targeted application. However, there are currently no derating guidelines for Li-ion batteries. This paper presents derating methodology and guidelines for Li-ion batteries using temperature, discharge C-rate, charge C-rate, charge cut-off current, charge cut-off voltage, and state of charge (SOC) stress factors to reduce the rate of capacity loss and extend battery calendar life and cycle life. Experimental battery degradation data from our testing and the literature have been reviewed to demonstrate the role of stress factors in battery degradation and derating for two widely used Li-ion batteries: graphite/LiCoO2 (LCO) and graphite/LiFePO4 (LFP). Derating factors have been computed based on the battery capacity loss to quantitatively evaluate the derating effects of the stress factors and identify the significant factors for battery derating.


2015 ◽  
Vol 3 (1) ◽  
pp. 404-411 ◽  
Author(s):  
Xuan-Wen Gao ◽  
Yuan-Fu Deng ◽  
David Wexler ◽  
Guo-Hua Chen ◽  
Shu-Lei Chou ◽  
...  

Conductive polypyrrole (PPy)-coated LiNi0.5Mn1.5O4(LNMO) composites are applied as cathode materials in Li-ion batteries, and their electrochemical properties are explored at both room and elevated temperature.


RSC Advances ◽  
2014 ◽  
Vol 4 (68) ◽  
pp. 36301-36306 ◽  
Author(s):  
Lijun Fu ◽  
Kepeng Song ◽  
Xifei Li ◽  
Peter A. van Aken ◽  
Chunlei Wang ◽  
...  

The ‘self-matrix’ function of NiSnO3 as an anode in Li-ion batteries has been investigated via ex situ TEM and SAED.


Author(s):  
A. Mancha

Today the United States is heavily reliant on the lithium-ion battery as most portable devices and electronics run on it. Current innovations are also looking on how to maximize it on the grid and transportation. This paper will look at three sovereign states and their current initiatives on Li-ion battery recycling: US, European Union, and China. The term initiative is used loosely as the information is not permanent in most policies or plans. Li-ion battery recycling initiatives are crucial to look at because used and wasted Li-ion batteries can disrupt public health and Li-ion batteries are expected to be a factor for effective material supply for future battery production especially in transportation, like the Tesla Roadster.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2203
Author(s):  
Hong Wang ◽  
Yuejin Ma ◽  
Wenming Zhang

Nanoscale Fe3O4-Sn@CNFs was prepared by loading Fe3O4 and Sn nanoparticles onto CNFs synthesized via electrostatic spinning and subsequent thermal treatment by solvothermal reaction, and were used as anode materials for lithium-ion batteries. The prepared anode delivers an excellent reversible specific capacity of 1120 mAh·g−1 at a current density of 100 mA·g−1 at the 50th cycle. The recovery rate of the specific capacity (99%) proves the better cycle stability. Fe3O4 nanoparticles are uniformly dispersed on the surface of nanofibers with high density, effectively increasing the electrochemical reaction sites, and improving the electrochemical performance of the active material. The rate and cycling performance of the fabricated electrodes were significantly improved because of Sn and Fe3O4 loading on CNFs with high electrical conductivity and elasticity.


Nanoscale ◽  
2014 ◽  
Vol 6 (9) ◽  
pp. 4669-4675 ◽  
Author(s):  
Adam P. Cohn ◽  
Landon Oakes ◽  
Rachel Carter ◽  
Shahana Chatterjee ◽  
Andrew S. Westover ◽  
...  

Freestanding, flexible graphene–SWNT foams give promise for Li-ion batteries due to synergistic roles of these hybrid materials in Li storage.


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34724-34736 ◽  
Author(s):  
Manjiri A. Mahadadalkar ◽  
Sayali B. Kale ◽  
Ramchandra S. Kalubarme ◽  
Ashwini P. Bhirud ◽  
Jalindar D. Ambekar ◽  
...  

The multi-functionality of the hierarchical CdIn2S4/graphene nano-heterostructure prepared using a single step process, as an active photocatalyst for hydrogen production and as an anode for Li-ion batteries has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document