Polymer-ceramic composite electrolytes for all-solid-state lithium batteries: Ionic conductivity and chemical interaction enhanced by oxygen vacancy in ceramic nanofibers

2021 ◽  
Vol 495 ◽  
pp. 229796
Author(s):  
Hui Yang ◽  
Muhammad Abdullah ◽  
Joeseph Bright ◽  
Weiguo Hu ◽  
Kevin Kittilstved ◽  
...  
2020 ◽  
Vol 12 (47) ◽  
pp. 52652-52659
Author(s):  
Mengjun Wu ◽  
Dan Liu ◽  
Deyu Qu ◽  
Zhizhong Xie ◽  
Junsheng Li ◽  
...  

Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 421-436
Author(s):  
Aamir Iqbal Waidha ◽  
Vanita Vanita ◽  
Oliver Clemens

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10−7 S cm−1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.


Author(s):  
Weixiao Ji ◽  
Dong Zheng ◽  
Xiaoxiao Zhang ◽  
Tianyao Ding ◽  
Deyang Qu

Despite excellent ionic conductivity and electrochemical oxidative stability, the emerging halide-based solid electrolytes suffer from inherent instability toward Li metal anode. A thick and resistive interface can be formed by...


2019 ◽  
Vol 4 (2) ◽  
pp. 379-385 ◽  
Author(s):  
X. Chelsea Chen ◽  
Robert L. Sacci ◽  
Naresh C. Osti ◽  
Madhusudan Tyagi ◽  
Yangyang Wang ◽  
...  

This work elucidates the effects of Li+ conducting ceramic on the segmental dynamics and ionic conductivity of polymer electrolyte using quasi-elastic neutron scattering.


Nano Energy ◽  
2018 ◽  
Vol 46 ◽  
pp. 176-184 ◽  
Author(s):  
Long Chen ◽  
Yutao Li ◽  
Shuai-Peng Li ◽  
Li-Zhen Fan ◽  
Ce-Wen Nan ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongcai Gao ◽  
Nicholas S. Grundish ◽  
Yongjie Zhao ◽  
Aijun Zhou ◽  
John B. Goodenough

The integration of solid-polymer electrolytes into all-solid-state lithium batteries is highly desirable to overcome the limitations of current battery configurations that have a low energy density and severe safety concerns. Polyacrylonitrile is an appealing matrix for solid-polymer electrolytes; however, the practical utilization of such polymer electrolytes in all-solid-state cells is impeded by inferior ionic conductivity and instability against a lithium-metal anode. In this work, we show that a polymer-in-salt electrolyte based on polyacrylonitrile with a lithium salt as the major component exhibits a wide electrochemically stable window, a high ionic conductivity, and an increased lithium-ion transference number. The growth of dendrites from the lithium-metal anode was suppressed effectively by the polymer-in-salt electrolyte to increase the safety features of the batteries. In addition, we found that a stable interphase was formed between the lithium-metal anode and the polymer-in-salt electrolyte to restrain the uncontrolled parasitic reactions, and we demonstrated an all-solid-state battery configuration with a LiFePO4 cathode and the polymer-in-salt electrolyte, which exhibited a superior cycling stability and rate capability.


Sign in / Sign up

Export Citation Format

Share Document