solid state electrolyte
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 292)

H-INDEX

40
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Zheng Huang ◽  
Wei Wang ◽  
Wei-Li Song ◽  
Mingyong Wang ◽  
Hao-Sen Chen ◽  
...  

Abstract Aluminum−sulfur (Al−S) batteries of ultrahigh energy-to-price ratios are promising for next-generation energy storage, while they suffer from large charge/discharge voltage hysteresis and short lifespan. Herein, an electrocatalyst-boosting quasi-solid-state Al−S battery is proposed, in which sulfur is anchored on the cobalt/nitrogen co-doped graphene (S@CoNG, as the positive electrode) and chloroaluminate-based ionic liquid (IL) is encapsulated into metal-organic frameworks (IL@MOF, as the quasi-solid-state electrolyte). Mechanistically, the Co−N bonds in CoNG act as electrocatalytic center to continuous induce breaking of Al−Cl bonds and S−S bonds and accelerate the kinetics of sulfur conversion, endowing the Al−S battery with much shortened voltage gap of 0.32 V and 0.98 V in the discharge voltage plateau. Within quasi-solid-state IL@MOF electrolytes, shuttle effect of polysulfides has been inhibited, which stabilizes the process of reversible sulfur conversion. Consequently, the assembled Al−S battery presents high specific capacity of 820 mAh g−1 and 78% capacity retention after 300 cycles. This concept here offers novel insights to design practical Al−S batteries for stable energy storage.


Batteries ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Samuel Adjepong Danquah ◽  
Jacob Strimaitis ◽  
Clifford F. Denize ◽  
Sangram K. Pradhan ◽  
Messaoud Bahoura

All-solid-state batteries (ASSBs) are gaining traction in the arena of energy storage due to their promising results in producing high energy density and long cycle life coupled with their capability of being safe. The key challenges facing ASSBs are low conductivity and slow charge transfer kinetics at the interface between the electrode and the solid electrolyte. Garnet solid-state electrolyte has shown promising results in improving the ion conductivity but still suffers from poor capacity retention and rate performance due to the interfacial resistance between the electrodes. To improve the interfacial resistance, we prepared a composite consisting of Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) garnet material as the ceramic, polyethylene oxide (PEO) as the polymer, and lithium hexafluorophosphate (LiPF6) as the salt. These compounds are mixed in a stoichiometric ratio and developed into a very thin disc-shaped solid electrolyte. The LLCZN provides a lithium-ion transport path to enhance the lithium-ion conduction during charging and discharging cycles, while the LiPF6 contributes more lithium ions via the transport path. The PEO matrix in the composite material aids in bonding the compounds together and creating a large contact area, thereby reducing the issue of large interfacial resistance. FESEM images show the porous nature of the electrolyte which promotes the movement of lithium ions through the electrolyte. The fabricated LLCZN/PEO/LiPF6 solid-state electrolyte shows outstanding electrochemical stability that remains at 130 mAh g−1 up to 150 charging and discharging cycles at 0.05 mA cm−2 current. All the specific capacities were calculated based on the mass of the cathode material (LiCoO2). In addition, the coin cell retains 85% discharge capacity up to 150 cycles with a Coulombic efficiency of approximately 98% and energy efficiency of 90% during the entire cycling process.


Author(s):  
Jung Yong Seo ◽  
Sunggeun Shim ◽  
Jin-Woong Lee ◽  
Byung Do Lee ◽  
Sangwon Park ◽  
...  

Na3PS4 is an archetypal room-temperature (RT), Na+-conducting, solid-state electrolyte. Various compositional modifications of this compound via iso/aliovalent substitution are known to provide a high ionic conductivity (ion) that is comparable...


2022 ◽  
Author(s):  
Xiang Han ◽  
Tiantian Wu ◽  
Lanhui Gu ◽  
Dian Tian

A three-dimensional (3D) metal-organic framework containing Li-oxygen clusters, namely {[Li2(IPA)]·DMF}n (1) (H2IPA = isophthalic acid), has been constructed under solvothermal conditions. The Li-based MOF can be applied to lithium energy...


2022 ◽  
Vol 216 ◽  
pp. 106363
Author(s):  
Xin Pei ◽  
Jinlong Mu ◽  
Jianhe Hong ◽  
Wenfei Wei ◽  
Wenjun Luo ◽  
...  

Author(s):  
Xingyu Zhu ◽  
Zhi Chang ◽  
Huijun Yang ◽  
Ping He ◽  
Haoshen Zhou

A ZIF-69-SN quasi-solid-state electrolyte enables high safety and stability in lithium–metal batteries.


Author(s):  
Günther J. Redhammer ◽  
Gerold Tippelt ◽  
Daniel Rettenwander

Single crystals of an Li-stuffed, Al- and Ga-stabilized garnet-type solid-state electrolyte material, Li7La3Zr2O12 (LLZO), have been analysed using single-crystal X-ray diffraction to determine the pristine structural state immediately after synthesis via ceramic sintering techniques. Hydrothermal treatment at 150 °C for 28 d induces a phase transition in the Al-stabilized compound from the commonly observed cubic Ia\overline{3}d structure to the acentric I\overline{4}3d subtype. LiI ions at the interstitial octahedrally (4 + 2-fold) coordinated 48e site are most easily extracted and AlIII ions order onto the tetrahedral 12a site. Deep hydration induces a distinct depletion of LiI at this site, while the second tetrahedral site, 12b, suffers only minor LiI loss. Charge balance is maintained by the incorporation of HI, which is bonded to an O atom. Hydration of Ga-stabilized LLZO induces similar effects, with complete depletion of LiI at the 48e site. The LiI/HI exchange not only leads to a distinct increase in the unit-cell size, but also alters some bonding topology, which is discussed here.


2021 ◽  
pp. 134271
Author(s):  
Chuankai Fu ◽  
Xu Zhang ◽  
Can Cui ◽  
Xueyan Zhang ◽  
Shuaifeng Lou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document