A renewable membrane with high ionic conductivity and thermal stability for Li-ion batteries

2022 ◽  
Vol 521 ◽  
pp. 230947
Author(s):  
Amin Liu ◽  
Shiyue Li ◽  
Zhenyu Jiang ◽  
Jian Du ◽  
Yehan Tao ◽  
...  
2021 ◽  
pp. 171-179
Author(s):  
Yongheum Lee ◽  
Jiwon Jeong ◽  
Ho Jun Lee ◽  
Mingony Kim ◽  
Daseul Han ◽  
...  

2013 ◽  
Vol 1496 ◽  
Author(s):  
Sumaletha Narayanan ◽  
Lina Truong ◽  
Venkataraman Thangadurai

ABSTRACTGarnet-type electrolytes are currently receiving much attention for applications in Li-ion batteries, as they possess high ionic conductivity and chemical stability. Doping the garnet structure has proved to be a good way to improve the Li ion conductivity and stability. The present study includes effects of Y- doping in Li5La3Nb2O12 on Li ion conductivity and stability of “Li5+2xLa3Nb2-xYxO12” (0.05 ≤ x ≤ 0.75) under various environments, as well as chemical stability studies of Li5+xBaxLa3-xM2O12 (M = Nb, Ta) in water. “Li6.5La3Nb1.25Y0.75O12” showed a very high ionic conductivity of 2.7 х 10−4 Scm−1 at 25 °C, which is comparable to the highest value reported for garnet-type compounds, e.g., Li7La3Zr2O12. The selected members show very good stability against high temperatures, water, Li battery cathode Li2CoMn3O8 and carbon. The Li5+xBaxLa3-xNb2O12 garnets have shown to readily undergo an ion-exchange (proton) reaction under water treatment at room temperature; however, the Ta-based garnet appears to exhibit considerably higher stability under the same conditions.


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.


2009 ◽  
Vol 191 (2) ◽  
pp. 575-581 ◽  
Author(s):  
H.F. Xiang ◽  
H. Wang ◽  
C.H. Chen ◽  
X.W. Ge ◽  
S. Guo ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (28) ◽  
pp. 15773-15779 ◽  
Author(s):  
Ceren Zor ◽  
Mehmet Somer ◽  
Semih Afyon

LiMg0.1Co0.9BO3 could be a promising cathode material given the electronic and ionic conductivity problems are addressed.


Sign in / Sign up

Export Citation Format

Share Document