scholarly journals Investigating the Factors Affecting the Ionic Conduction in Nanoconfined NaBH4

Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.

Author(s):  
Günther J. Redhammer ◽  
Gerold Tippelt ◽  
Quirin Stahl ◽  
Artur Benisek ◽  
Daniel Rettenwander

NaSICON (Na Super-Ionic CONducting) structured materials are among the most promising solid electrolytes for Li-ion batteries and `beyond Li-ion' batteries (e.g. Na and K) due to their superior ionic conductivities. Although this material has been well known for decades, its exact phase behaviour is still poorly understood. Herein, a starting material of Na3Sc2(PO4)3 single crystals is used, grown by flux methodology, where Na is subsequently chemically replaced by Ag, in order to take advantage of the higher scattering contrast of Ag. It is found that the NaSICON-type compound shows two phase transitions from a low-temperature monoclinic α-phase to a monoclinic β-phase at about 180 K and to a rhombohedral γ-phase at about 290 K. The framework of [Sc2(PO4)3]3− is rigid and does not change significantly with temperature and change of symmetry. The main driving force for the phase transitions is related to order–disorder phenomena of the conducting cations. The sensitivity of the phase behaviour on the ordering of these ions suggests that small compositional changes can have a great impact on the phase behaviour and, hence, on the ionic conductivity of NaSICON-structured materials.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


2021 ◽  
pp. 171-179
Author(s):  
Yongheum Lee ◽  
Jiwon Jeong ◽  
Ho Jun Lee ◽  
Mingony Kim ◽  
Daseul Han ◽  
...  

Membranes ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 50 ◽  
Author(s):  
Víctor Gregorio ◽  
Nuria García ◽  
Pilar Tiemblo

Solid electrolytes for Li transport have been prepared by melt-compounding in one single step. Electrolytes are composed of polyvinylidene fluoride–hexafluoropropylene (PVDF–HFP) with PYR13TFSI on its own or with varying concentration of LiTFSI. While the extrusion of PVDF–HFP with PYR13TFSI is possible up to relatively high liquid fractions, the compatibility of PVDF–HFP with LiTFSI/PYR13TFSI solutions is much lower. An organo-modified sepiolite with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS-S) can be used to enhance the compatibility of these blends and allows to prepare homogeneous PYR13TFSI/LiTFSI/PVDF–HFP electrolytes with controlled microphase separations by melt-compounding. The structure and morphology of the electrolytes has been studied by FTIR, differential scanning calorimetry (DSC), SEM, and AFM. Their mechanical properties have been studied by classical strain–stress experiments. Finally, ionic conductivity has been studied in the −50 to 90 °C temperature range and in diffusivity at 25 °C by PFG-NMR. These electrolytes prove to have a microphase-separated morphology and ionic conductivity which depends mainly on their composition, and a mechanical behavior typical of common thermoplastic polymers, which makes them very easy to handle. Then, in this solvent-free and scalable fashion, it is possible to prepare electrolytes like those prepared by solvent casting, but in few minutes instead of several hours or days, without solvent evaporation steps, and with ionic conductivities, which are very similar for the same compositions, above 0.1 mS·cm−1 at 25 °C. In addition, some of the electrolytes have been prepared with high concentration of Li ion, what has allowed the anion exchange Li transport mechanism to contribute significantly to the overall Li diffusivity, making DLi become similar and even clearly greater than DTFSI.


2018 ◽  
Vol 281 ◽  
pp. 774-781
Author(s):  
Ke Shan ◽  
Feng Rui Zhai ◽  
Nan Li ◽  
Zhong Zhou Yi

A single phase perovskite, YxSr1−xTi0.6Fe0.4O3-δ(x=0.06-0.09), was fabricated at 1350°C in air by sol-gel method. The effects of Y-and Fe-doping into SrTiO3on phase structure, electrical conductivity, ionic conductivity and its impedance behavior were investigated. The optimized Y0.07Sr0.93Fe0.4Ti0.6O3-δsample exhibits an electrical conductivity of 0.135 S·cm-1at 800 °C. Y-doping decreases the migration energy for oxygen ions, leading to a significant increase in ionic conductivity. The ionic conductivity of Y0.09Sr0.91Ti0.6Fe0.4O3-δsample varies from 0.0052 S· cm-1at 600°C to 0.02 S·cm-1at 800°C. Impedance characteristics over a wide frequency range of 0.01Hz-100 KHz reveal that the resistance of ionic conduction is predominantly influenced by grain boundary, the relaxation time of which decreases with increase of Y-doping amount.


2013 ◽  
Vol 1496 ◽  
Author(s):  
Sumaletha Narayanan ◽  
Lina Truong ◽  
Venkataraman Thangadurai

ABSTRACTGarnet-type electrolytes are currently receiving much attention for applications in Li-ion batteries, as they possess high ionic conductivity and chemical stability. Doping the garnet structure has proved to be a good way to improve the Li ion conductivity and stability. The present study includes effects of Y- doping in Li5La3Nb2O12 on Li ion conductivity and stability of “Li5+2xLa3Nb2-xYxO12” (0.05 ≤ x ≤ 0.75) under various environments, as well as chemical stability studies of Li5+xBaxLa3-xM2O12 (M = Nb, Ta) in water. “Li6.5La3Nb1.25Y0.75O12” showed a very high ionic conductivity of 2.7 х 10−4 Scm−1 at 25 °C, which is comparable to the highest value reported for garnet-type compounds, e.g., Li7La3Zr2O12. The selected members show very good stability against high temperatures, water, Li battery cathode Li2CoMn3O8 and carbon. The Li5+xBaxLa3-xNb2O12 garnets have shown to readily undergo an ion-exchange (proton) reaction under water treatment at room temperature; however, the Ta-based garnet appears to exhibit considerably higher stability under the same conditions.


RSC Advances ◽  
2018 ◽  
Vol 8 (28) ◽  
pp. 15773-15779 ◽  
Author(s):  
Ceren Zor ◽  
Mehmet Somer ◽  
Semih Afyon

LiMg0.1Co0.9BO3 could be a promising cathode material given the electronic and ionic conductivity problems are addressed.


2019 ◽  
Vol 12 (7) ◽  
pp. 2286-2297 ◽  
Author(s):  
Wenwu Li ◽  
Xinwei Li ◽  
Jun Liao ◽  
Bote Zhao ◽  
Lei Zhang ◽  
...  

Cation-disordered Zn(Cu)–Si–P family materials demonstrate better Li-storage performance than the cation-ordered ZnSiP2 phase due largely to faster electronic and ionic conductivity and better tolerance to volume change during cycling, as confirmed by DFT calculations and experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document