Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer

2008 ◽  
Vol 109 (6) ◽  
pp. 1016-1029 ◽  
Author(s):  
G. Sonnabend ◽  
M. Sornig ◽  
P. Krötz ◽  
D. Stupar ◽  
R. Schieder
2019 ◽  
Author(s):  
Marie-Thérèse El Kattar ◽  
Frédérique Auriol ◽  
Hervé Herbin

Abstract. Ground-based high spectral resolution infrared measurements are an efficient way to obtain accurate tropospheric abundances of different gaseous species and in particular GreenHouse Gases (GHG), such as CO2 and CH4. Many ground-based spectrometers are used in the NDACC and TCCON networks to validate the Level 2 satellite data, but their large dimensions and heavy mass makes them inadequate for field campaigns. To overcome these problems, the use of portable spectrometers was recently investigated. In this context, this paper deals with the CHRIS (Compact High-spectral Resolution Infrared Spectrometer) prototype with unique characteristics such as its high spectral resolution (0.135 cm-1 non-apodized) and its wide spectral range (680 to 5200 cm-1). Its main objective is the characterization of gases and aerosols in the infrared thermal region, that's why it requires high radiometric precision and accuracy, which is achieved by performing spectral and radiometric calibrations that will be presented in this paper. Also, CHRIS's capabilities to retrieve CO2 and CH4 vertical profiles are presented through a complete information content analysis, a channel selection and an error budget estimation in the attempt to join the ongoing campaigns, such as MAGIC, to monitor the GHG and validate the actual and future space missions.


2020 ◽  
Vol 13 (7) ◽  
pp. 3769-3786
Author(s):  
Marie-Thérèse El Kattar ◽  
Frédérique Auriol ◽  
Hervé Herbin

Abstract. Ground-based high-spectral-resolution infrared measurements are an efficient way to obtain accurate tropospheric abundances of different gaseous species, in particular greenhouse gases (GHGs) such as CO2 and CH4. Many ground-based spectrometers are used in the NDACC and TCCON networks to validate the Level 2 satellite data, but their large dimensions and heavy mass make them inadequate for field campaigns. To overcome these problems, the use of portable spectrometers was recently investigated. In this context, this paper deals with the CHRIS (Compact High-Spectral-Resolution Infrared Spectrometer) prototype with unique characteristics such as its high spectral resolution (0.135 cm−1 nonapodized) and its wide spectral range (680 to 5200 cm−1). Its main objective is the characterization of gases and aerosols in the thermal and shortwave infrared regions. That is why it requires high radiometric precision and accuracy, which are achieved by performing spectral and radiometric calibrations that are described in this paper. Furthermore, CHRIS's capabilities to retrieve vertical CO2 and CH4 profiles are presented through a complete information content analysis, a channel selection and an error budget estimation in the attempt to join ongoing campaigns such as MAGIC (Monitoring of Atmospheric composition and Greenhouse gases through multi-Instruments Campaigns) to monitor GHGs and validate the actual and future space missions such as IASI-NG and Microcarb.


Sign in / Sign up

Export Citation Format

Share Document