Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

2010 ◽  
Vol 111 (14) ◽  
pp. 2106-2114 ◽  
Author(s):  
Yuan Yuan ◽  
Hong-Liang Yi ◽  
Yong Shuai ◽  
Fu-Qiang Wang ◽  
He-Ping Tan
2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Kaitlin DuPaul ◽  
Adam Whitten

A synthetic set of aerosol optical depths (AODs) generated from a standard set of aerosol size distributions was analyzed by a parameter based particle swarm optimization (PBPSO) routine in order to test the reproducibility of the results. Junge and lognormal size distributions were consistently reproduced. Gamma and bimodal distributions showed large variability in solutions. values were used to determine the best subset of possible solutions allowing quantification of parameters with uncertainties when using PBPSO. AODs measured by a sun photometer on a clear day (20160413) and a foggy day (20160508) were then processed by the PBPSO program for both bimodal and lognormal distributions. Results showed that in general the foggy day has smaller values indicating that the PBPSO algorithm is better able to match AODs when there is a larger aerosol load in the atmosphere. The bimodal distribution from the clear day best describes the aerosol size distribution since the values are lower. The lognormal distribution best describes the aerosol size distribution on the foggy day (20160508). KEYWORDS: Atmospheric Aerosols; Size Distributions; Junge; Bimodal; Gamma; Lognormal; Particle Swarm Optimization; Inverse Problem; Aerosol Optical Depth


2015 ◽  
Vol 19 (6) ◽  
pp. 2151-2160 ◽  
Author(s):  
Hong Qi ◽  
Zhen-Zong He ◽  
Shuai Gong ◽  
Li-Ming Ruan

The particle size distribution (PSD) plays an important role in environmental pollution detection and human health protection, such as fog, haze and soot. In this study, the Attractive and Repulsive Particle Swarm Optimization (ARPSO) algorithm and the basic PSO were applied to retrieve the PSD. The spectral extinction technique coupled with the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law were employed to investigate the retrieval of the PSD. Three commonly used monomodal PSDs, i.e. the Rosin-Rammer (R-R) distribution, the normal (N-N) distribution, the logarithmic normal (L-N) distribution were studied in the dependent model. Then, an optimal wavelengths selection algorithm was proposed. To study the accuracy and robustness of the inverse results, some characteristic parameters were employed. The research revealed that the ARPSO showed more accurate and faster convergence rate than the basic PSO, even with random measurement error. Moreover, the investigation also demonstrated that the inverse results of four incident laser wavelengths showed more accurate and robust than those of two wavelengths. The research also found that if increasing the interval of the selected incident laser wavelengths, inverse results would show more accurate, even in the presence of random error.


Author(s):  
Shafiullah Khan ◽  
Shiyou Yang ◽  
Obaid Ur Rehman

Purpose The aim of this paper is to explore the potential of particle swarm optimization (PSO) algorithm to solve an electromagnetic inverse problem. Design/methodology/approach A modified PSO algorithm is designed. Findings The modified PSO algorithm is a more stable, robust and efficient global optimizer for solving the well-known benchmark optimization problems. The new mutation approach preserves the diversity of the population, whereas the proposed dynamic and adaptive parameters maintain a good balance between the exploration and exploitation searches. The numerically experimental results of two case studies demonstrate the merits of the proposed algorithm. Originality/value Some improvements, such as the design of a new global mutation mechanism and introducing a novel strategy for learning and control parameters, are proposed.


Sign in / Sign up

Export Citation Format

Share Document