Influence of Al/Cu content on grain boundary diffusion in Nd-Fe-B magnet via in-situ observation

2019 ◽  
Vol 37 (4) ◽  
pp. 398-403 ◽  
Author(s):  
Xinghua Cheng ◽  
Jian Li ◽  
Lei Zhou ◽  
Tao Liu ◽  
Xiaojun Yu ◽  
...  
1998 ◽  
Vol 517 ◽  
Author(s):  
Heng Gong ◽  
Wei Yang ◽  
David N. Lambeth ◽  
David E. Laughlin

AbstractThe effects of rapid oxidation and overcoat diffusion processes on the intergranular coupling and grain isolation in thin Co films were studied. The oxidation process was found to be strongly temperature dependent. The optimal coercivities can only be achieved within a narrow range of temperatures, while further increasing the temperature incurs significant thermal instability. CrMn underlayers were confirmed to be more effective in enhancing the grain isolation by the grain boundary diffusion during the oxidation process. The oxidation process does not change the Co anisotropy, and hence the coercivity increase is appears to be a result of better grain isolation. The in-situ diffusion of Ag and Cr overcoats were also found to have siginificant effects on the grain isolation in Co and CoCr films.


2005 ◽  
Vol 237-240 ◽  
pp. 499-501 ◽  
Author(s):  
Sergiy V. Divinski ◽  
Christian Herzig

Diffusion of 64Cu, 59Fe, and 63Ni radiotracers has been measured in Cu–Fe–Ni alloys of different compositions at 1271 K. The measured penetration profiles reveal grain boundary-induced part along with the volume diffusion one. Correction on grain boundary diffusion was taken into account when determining the volume diffusivities of the components. When the Cu content in the alloys increases, the diffusivities increase by order of magnitude. This behaviour correlates well with decreasing of the melting temperature of corresponding alloys, as the Cu content increases. Modelling of interdiffusion in the Cu–Fe–Ni system based on Danielewski-Holly model of interdiffusion is presented. In this model (extended Darken method for multi-component systems) a postulate that the total mass flow is a sum of the diffusion and the drift flows was applied for the description of interdiffusion in the closed system. Nernst-Planck’s flux formula assuming a chemical potential gradient as a driving force for the mass transport was used for computing the diffusion flux in non-ideal multi-component systems. In computations of the diffusion profiles the measured tracer diffusion coefficients of Cu, Fe and Ni as well as the literature data on thermodynamic activities for the Cu–Fe–Ni system were used. The calculated interdiffusion concentration profiles (diffusion paths) reveal satisfactory agreement with the experimental results.


1990 ◽  
Vol 51 (C1) ◽  
pp. C1-691-C1-696 ◽  
Author(s):  
K. VIEREGGE ◽  
R. WILLECKE ◽  
Chr. HERZIG

2005 ◽  
Vol 96 (10) ◽  
pp. 1187-1192 ◽  
Author(s):  
Raymond J. Kremer ◽  
Mysore A. Dayananda ◽  
Alexander H. King

2020 ◽  
Vol 13 (10) ◽  
pp. 105501
Author(s):  
Kuan-Kan Hu ◽  
Kensaku Maeda ◽  
Keiji Shiga ◽  
Haruhiko Morito ◽  
Kozo Fujiwara

Sign in / Sign up

Export Citation Format

Share Document