The three-dimensional structure of an eukaryotic glutamine synthetase: Functional implications of its oligomeric structure

2006 ◽  
Vol 156 (3) ◽  
pp. 469-479 ◽  
Author(s):  
Oscar Llorca ◽  
Marco Betti ◽  
José M. González ◽  
Alfonso Valencia ◽  
Antonio J. Márquez ◽  
...  
Science ◽  
1991 ◽  
Vol 251 (5000) ◽  
pp. 1456-1464 ◽  
Author(s):  
J Tsao ◽  
M. Chapman ◽  
M Agbandje ◽  
W Keller ◽  
K Smith ◽  
...  

Author(s):  
Marco A. Riojas ◽  
Andrew M. Frank ◽  
Nikhita P. Puthuveetil ◽  
Beth Flores ◽  
Michael Parker ◽  
...  

AbstractThe function of the SARS-CoV-2 accessory protein p6, encoded by ORF6, is not fully known. Based upon its similarity to p6 from SARS-CoV, it may play a similar role, namely as an antagonist of type I interferon (IFN) signaling. Here we report the sequencing of a SARS-CoV-2 strain passaged six times after original isolation from a clinical patient in Hong Kong. The genome sequence shows a 27 nt in-frame deletion (Δ27,264-27,290) within ORF6, predicted to result in a 9 aa deletion (ΔFKVSIWNLD) from the central portion of p6. This deletion is predicted to result in a dramatic alteration in the three-dimensional structure of the resultant protein (p6Δ22-30), possibly with significant functional implications. Analysis of the original clinical sample indicates that the deletion was not present, while sequencing of subsequent passages of the strain identifies the deletion as a majority variant. This suggests that the deletion originated ab initio during passaging and subsequently propagated into the majority, possibly due to the removal of selective pressure through the IFN-deficient Vero E6 cell line. The specific function of the SARS-CoV-2 p6 N-terminus, if any, has not yet been determined. However, this deletion is predicted to cause a shift from N-endo to N-ecto in the transmembrane localization of the SARS-CoV-2 p6Δ22-30 N-terminus, possibly leading to the ablation of its native function.


1992 ◽  
Vol 12 (1) ◽  
pp. 10-23 ◽  
Author(s):  
B. Veerapandian ◽  
Gary L. Gilliland ◽  
Reetta Raag ◽  
Anders L. Svensson ◽  
Yoshihiro Masui ◽  
...  

Author(s):  
N. H. Olson ◽  
T. S. Baker ◽  
Wu Bo Mu ◽  
J. E. Johnson ◽  
D. A. Hendry

Nudaurelia capensis β virus (NβV) is an RNA virus of the South African Pine Emperor moth, Nudaurelia cytherea capensis (Lepidoptera: Saturniidae). The NβV capsid is a T = 4 icosahedron that contains 60T = 240 subunits of the coat protein (Mr = 61,000). A three-dimensional reconstruction of the NβV capsid was previously computed from visions embedded in negative stain suspended over holes in a carbon film. We have re-examined the three-dimensional structure of NβV, using cryo-microscopy to examine the native, unstained structure of the virion and to provide a initial phasing model for high-resolution x-ray crystallographic studiesNβV was purified and prepared for cryo-microscopy as described. Micrographs were recorded ∼1 - 2 μm underfocus at a magnification of 49,000X with a total electron dose of about 1800 e-/nm2.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


Author(s):  
José L. Carrascosa ◽  
José M. Valpuesta ◽  
Hisao Fujisawa

The head to tail connector of bacteriophages plays a fundamental role in the assembly of viral heads and DNA packaging. In spite of the absence of sequence homology, the structure of connectors from different viruses (T4, Ø29, T3, P22, etc) share common morphological features, that are most clearly revealed in their three-dimensional structure. We have studied the three-dimensional reconstruction of the connector protein from phage T3 (gp 8) from tilted view of two dimensional crystals obtained from this protein after cloning and purification.DNA sequences including gene 8 from phage T3 were cloned, into Bam Hl-Eco Rl sites down stream of lambda promotor PL, in the expression vector pNT45 under the control of cI857. E R204 (pNT89) cells were incubated at 42°C for 2h, harvested and resuspended in 20 mM Tris HC1 (pH 7.4), 7mM 2 mercaptoethanol, ImM EDTA. The cells were lysed by freezing and thawing in the presence of lysozyme (lmg/ml) and ligthly sonicated. The low speed supernatant was precipitated by ammonium sulfate (60% saturated) and dissolved in the original buffer to be subjected to gel nitration through Sepharose 6B, followed by phosphocellulose colum (Pll) and DEAE cellulose colum (DE52). Purified gp8 appeared at 0.3M NaCl and formed crystals when its concentration increased above 1.5 mg/ml.


Sign in / Sign up

Export Citation Format

Share Document