Three Dimensional structure and organization of diploid chromosomes by optical section microscopy

Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.

2020 ◽  
Vol 89 (1) ◽  
pp. 695-715
Author(s):  
Eveline S. Litscher ◽  
Paul M. Wassarman

The zona pellucida (ZP) is an extracellular matrix that surrounds all mammalian oocytes, eggs, and early embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is composed of three or four glycosylated proteins, ZP1–4, that are synthesized, processed, secreted, and assembled into long, cross-linked fibrils by growing oocytes. ZP proteins have an immunoglobulin-like three-dimensional structure and a ZP domain that consists of two subdomains, ZP-N and ZP-C, with ZP-N of ZP2 and ZP3 required for fibril assembly. A ZP2–ZP3 dimer is located periodically along ZP fibrils that are cross-linked by ZP1, a protein with a proline-rich N terminus. Fibrils in the inner and outer regions of the ZP are oriented perpendicular and parallel to the oolemma, respectively, giving the ZP a multilayered appearance. Upon fertilization of eggs, modification of ZP2 and ZP3 results in changes in the ZP's physical and biological properties that have important consequences. Certain structural features of ZP proteins suggest that they may be amyloid-like proteins.


2008 ◽  
Vol 64 (1) ◽  
pp. 12-25 ◽  
Author(s):  
Alla Arakcheeva ◽  
Gervais Chapuis

The previously reported incommensurately modulated scheelite-like structure KNd(MoO4)2 has been exploited as a natural (3 + 1)-dimensional superspace model to generate the scheelite-like three-dimensional structure family. Although each member differs in its space-group symmetry, unit-cell parameters and compositions, in (3 + 1)-dimensional space, they share a common superspace group, a common number of building units in the basic unit cell occupying Wyckoff sites with specific coordinates (x, y, z) and specific basic unit-cell axial ratios (c/a, a/b, b/c) and angles. Variations of the modulation vector q, occupation functions and t 0 are exploited for the derivation. Eight topologically and compositionally different known structures are compared with their models derived from the KNd(MoO4)2 structure in order to evaluate the capabilities and limitations of the incommensurately modulated structure to act as a superspace generating model. Applications of the KNd(MoO4)2 structure as a starting model for the refinement and prediction of some other modulated members of the family is also illustrated. The (3 + 1)-dimensional presentation of the scheelite-like structures reveals new structural relations, which remain hidden if only conventional three-dimensional structure descriptions are applied.


1998 ◽  
Vol 31 (2) ◽  
pp. 145-237 ◽  
Author(s):  
PETER GÜNTERT

The relationship between amino acid sequence, three-dimensional structure and biological function of proteins is one of the most intensely pursued areas of molecular biology and biochemistry. In this context, the three-dimensional structure has a pivotal role, its knowledge being essential to understand the physical, chemical and biological properties of a protein (Branden & Tooze, 1991; Creighton, 1993). Until 1984 structural information at atomic resolution could only be determined by X-ray diffraction techniques with protein single crystals (Drenth, 1994). The introduction of nuclear magnetic resonance (NMR) spectroscopy (Abragam, 1961) as a technique for protein structure determination (Wüthrich, 1986) has made it possible to obtain structures with comparable accuracy also in a solution environment that is much closer to the natural situation in a living being than the single crystals required for protein crystallography.


Author(s):  
N. H. Olson ◽  
T. S. Baker ◽  
Wu Bo Mu ◽  
J. E. Johnson ◽  
D. A. Hendry

Nudaurelia capensis β virus (NβV) is an RNA virus of the South African Pine Emperor moth, Nudaurelia cytherea capensis (Lepidoptera: Saturniidae). The NβV capsid is a T = 4 icosahedron that contains 60T = 240 subunits of the coat protein (Mr = 61,000). A three-dimensional reconstruction of the NβV capsid was previously computed from visions embedded in negative stain suspended over holes in a carbon film. We have re-examined the three-dimensional structure of NβV, using cryo-microscopy to examine the native, unstained structure of the virion and to provide a initial phasing model for high-resolution x-ray crystallographic studiesNβV was purified and prepared for cryo-microscopy as described. Micrographs were recorded ∼1 - 2 μm underfocus at a magnification of 49,000X with a total electron dose of about 1800 e-/nm2.


Author(s):  
José L. Carrascosa ◽  
José M. Valpuesta ◽  
Hisao Fujisawa

The head to tail connector of bacteriophages plays a fundamental role in the assembly of viral heads and DNA packaging. In spite of the absence of sequence homology, the structure of connectors from different viruses (T4, Ø29, T3, P22, etc) share common morphological features, that are most clearly revealed in their three-dimensional structure. We have studied the three-dimensional reconstruction of the connector protein from phage T3 (gp 8) from tilted view of two dimensional crystals obtained from this protein after cloning and purification.DNA sequences including gene 8 from phage T3 were cloned, into Bam Hl-Eco Rl sites down stream of lambda promotor PL, in the expression vector pNT45 under the control of cI857. E R204 (pNT89) cells were incubated at 42°C for 2h, harvested and resuspended in 20 mM Tris HC1 (pH 7.4), 7mM 2 mercaptoethanol, ImM EDTA. The cells were lysed by freezing and thawing in the presence of lysozyme (lmg/ml) and ligthly sonicated. The low speed supernatant was precipitated by ammonium sulfate (60% saturated) and dissolved in the original buffer to be subjected to gel nitration through Sepharose 6B, followed by phosphocellulose colum (Pll) and DEAE cellulose colum (DE52). Purified gp8 appeared at 0.3M NaCl and formed crystals when its concentration increased above 1.5 mg/ml.


Sign in / Sign up

Export Citation Format

Share Document