Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo–Miocene granitoids in the Biga Peninsula, Northwest Turkey

2015 ◽  
Vol 105 ◽  
pp. 68-84 ◽  
Author(s):  
Namık Aysal
2021 ◽  
Author(s):  
Alp Ünal ◽  
Şafak Altunkaynak

<p>Balıkesir Volcanites (BV) are included into the Balıkesir Volcanic Province and contain various products of Oligo-Miocene volcanic activity in NW Anatolia. BV are formed from trachyandesite, andesite and dacite lavas with associated pyroclastic rocks. In this study, we report the petrographical investigations, mineral chemistry results and geothermobarometry calculations of the Balıkesir Volcanites in order to deduce the magma chamber processes and crystallization conditions. Andesites present a mineral composition of plagioclase (An35–50) + amphibole (edenitic hornblende) +biotite ± quartz and opaque minerals. The major phenocryst phases in dacite lavas are plagioclase (An39–53), quartz, amphibole (magnesio-hornblende), biotite, sanidine and opaque minerals. The mineral composition of the trachyandesites, on the other hand, is represented by plagioclase (An38–57) + amphibole (pargasitic hornblende) + biotite + clinopyroxene (endiopside- augite) ± sanidine ± quartz ± opaque minerals. Balıkesir Volcanites present distinct textural properties such as rounded plagioclase phenocrysts with reaction rims, oscillatory zoning, honeycomb and sieve textures in plagioclase, reverse mantled biotite and hornblende crystals. The plagioclase- amphibole geothermobarometry calculations of Balıkesir volcanites indicate that, andesite and dacite lavas present similar crystallization temperature and pressures conditions of 798- 813°C and 1,98- 2.17 kbar. Oppositely, trachyandesites were crystallized under 857°C and 3,72 kbar temperature and pressure conditions. These results show that the andesite and dacite lavas were originated from the same magma chamber with the depth of 7km whereas trachyandesites were evolved in a deeper magma chamber with 13 km depth. Combined mineral chemistry, petrography and geothermobarometry studies indicate that the open system processes such as magma mixing/mingling and/or assimilation fractional crystallization (AFC) were responsible for the textural and compositional variations of the Balıkesir Volcanites.</p>


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 166
Author(s):  
Priscila S. Zandomeni ◽  
Juan A. Moreno ◽  
Sebastián O. Verdecchia ◽  
Edgardo G. Baldo ◽  
Juan A. Dahlquist ◽  
...  

The Sierra de Guasayán (Eastern Sierras Pampeanas, Argentina) is formed by low to medium grade metamorphic rocks intruded by Cambrian metaluminous (La Soledad quartz-diorite), slightly peraluminous (Guasayán, El Escondido and El Martirizado granodiorite plutons), and strongly peraluminous (Alto Bello granodiorite) granitoids of the Pampean magmatic arc. Chemical compositions of amphibole, plagioclase, biotite, and titanite indicate that these granitoids were emplaced at low pressure (mostly <3 kbar) and temperature (<770 °C) under oxidizing conditions (QFM + 1 and QFM + 2), which are similar to the emplacement conditions reported for other granites of the Pampean magmatic arc. Mineral assemblages and whole-rock and mineral chemistry of the granitoids from the Sierra de Guasayán indicate an I-type affinity for the La Soledad quartz-diorite (amphibole, biotite, and titanite), S-type affinity for the Alto Bello granodiorite (biotite, muscovite, cordierite, and sillimanite), and a hybrid nature for the main Guasayán and El Escondido plutons (biotite, monazite, and magnetite). This hybrid nature is supported by the presence of abundant mafic microgranular enclaves and rapakivi texture and by published zircon Hf-isotope data (εHfi ranging from −4.76 to −0.12). This suggests, in turn, the involvement of hybridization in the genesis of these granitoids, which seems to be a common mechanism operating in the Pampean magmatic arc.


Sign in / Sign up

Export Citation Format

Share Document