microgranular enclaves
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
pp. 1-35
Author(s):  
Wei Xie ◽  
Qing-Dong Zeng ◽  
Jin-Hui Yang ◽  
Rui Li ◽  
Zhuang Zhang ◽  
...  

Abstract Extensive magmatism in NE China, eastern Central Asian Orogenic Belt, has produced multi-stage granitic plutons and accompanying W mineralization. The Narenwula complex in the southwestern Great Xing’an Range provides important insights into the petrogenesis, geodynamic processes and relationship with W mineralization. The complex comprises granodiorites, monzogranites and granite porphyry. Mafic microgranular enclaves are common in the granodiorites, and have similar zircon U–Pb ages as their host rocks (258.5–253.9 Ma), whereas the W-bearing granitoids yield emplacement ages of 149.8–148.1 Ma. Permian granodiorites are I-type granites that are enriched in large-ion lithophile elements and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements. Both the mafic microgranular enclaves and granodiorites have nearly identical zircon Hf isotopic compositions. The results suggest that the mafic microgranular enclaves and granodiorites formed by the mixing of mafic and felsic magmas. W-bearing granitoids are highly fractionated A-type granites, enriched in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti and Eu. They have higher W concentrations and Rb/Sr ratios, and lower Nb/Ta, Zr/Hf and K/Rb ratios than the W-barren granodiorites. These data and negative ϵHf(t) values (–6.0 to –2.1) suggest that they were derived from the partial melting of ancient lower crust and subsequently underwent extreme fractional crystallization. Based on the regional geology, we propose that the granodiorites were generated in a volcanic arc setting related to the subduction of the Palaeo-Asian Ocean, whereas the W-bearing granitoids and associated deposits formed in a post-orogenic extensional setting controlled by the Mongol–Okhotsk Ocean and Palaeo-Pacific Ocean tectonic regimes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuxuan Ma ◽  
Zhongbao Zhao ◽  
Wenrong Cao ◽  
He Huang ◽  
Fahui Xiong ◽  
...  

The Quxu batholith of the Gangdese magmatic belt, southern Tibet, comprises predominantly Early Eocene calc-alkaline granitoids that feature a variety of types of magmatic microgranular enclaves and dikes. Previous studies have demonstrated that magma mixing played a crucial role in the formation of the Quxu batholith. However, the specific processes responsible for this mixing/hybridization have not been identified. The magmatic microgranular enclaves and dikes preserve a record of this magma mixing, and are therefore an excellent source of information about the processes involved. In this study, mesoscopic and microscopic magmatic structures have been investigated, in combination with analyses of mineral textures and chemical compositions. Texturally, most of the enclaves are microporphyritic, with large crystals such as clinopyroxene, hornblende, and plagioclase in a groundmass of hornblende, plagioclase, and biotite. Two types of enclave swarms can be distinguished: polygenic and monogenic swarms. Composite dikes are observed, and represent an intermediate stage between undisturbed mafic dike and dike-like monogenic enclave swarms. Our results reveal three distinct stages of magma mixing in the Quxu batholith, occurring at depth, during ascent and emplacement, and after emplacement, respectively. At depth, thorough and/or partial mixing occurred between mantle-derived mafic and crust-derived felsic magmas to produce hybrid magma. The mafic magma was generated from the primitive mantle, whereas the felsic end-member was produced by partial melting of the preexisting juvenile crust. Many types of enclaves and host granitoids are thus cogenetic, because all are hybrid products produced by the mixing of the two contrasting magmas in different proportions. In the second stage, segregation and differentiation of the hybrid magma led to the formation of the host granitoids as well as various types of magmatic microgranular enclaves. At this stage, mingling and/or local mixing happened during ascent and emplacement. In the final stage, mafic or hybrid magma was injected into early fractures in the crystallizing and cooling pluton to form dikes. Some dikes remained undisturbed, whereas others experienced local mingling and mixing to form composite dikes and eventually disturbed dike-like monogenic enclave swarms. In summary, our study demonstrates the coupling between magmatic texture and composition in an open-system batholith and highlights the potential of magmatic structures for understanding the magma mixing process.


2021 ◽  
Author(s):  
Tunahan Arık ◽  
Ömer Kamacı ◽  
Işıl Nur Güraslan ◽  
Şafak Altunkaynak

<p>Eocene granitoids in NW Anatolia occurred following the continental collision between Sakarya Continent and Tauride-Anatolide Platform and mark the onset of post-collisional magmatism in the region. One of the representative members of the Eocene granitoids, the Tepeldağ pluton crops out as two isolated granitic bodies and is intruded into the Cretaceous blueschist assemblages (Kocasu formation) and ophiolitic rocks within the Izmir-Ankara-Erzincan suture zone (IAESZ). South Tepeldağ pluton (STP) is composed mainly of granodiorite with subordinate quartz diorite, which show transitional contacts. Aplitic dykes crosscut the pluton as well as the country rocks. STP includes a number of mafic microgranular enclaves (MME) of gabbro/diorite composition.</p><p>Geochemically, STP shows distinct I-type affinity with a metaluminous to slightly peraluminous (ASI ≤1.02) nature. The samples are medium-K to high-K calc-alkaline in character. They exhibit depletion in HFSE (Ti, Hf, Zr, Nb and Ta) compared to large ion lithophile elements (Rb, Ba, Th, U, K) and presents negative Nb, P, Ti anomalies. STP displays slight negative Eu anomalies (Eu/Eu* = 0.7–1.2), enrichment in LREE and flat HREE patterns in chondrite-normalized spider diagrams. MELTS modeling (with initial parameters of 1–3 kbar pressure, 2–3% water and QFM-NNO oxygen fugacity buffers) indicate that compositional variations in STP samples can be interpreted as a result of open system processes (assimilation fractional crystallization) rather than a reflection of fractional crystallization in the upper crustal magma chamber. All thermodynamic simulations dictate a crustal assimilation, especially in the late stages of the magmatic process, with a MgO, Na<sub>2</sub>O and Al<sub>2</sub>O<sub>3</sub>-rich assimilant similar to the suture zone (IAESZ) rocks.</p>


Sign in / Sign up

Export Citation Format

Share Document