Magma chamber processes and dynamics beneath northwestern Anatolia: Insights from mineral chemistry and crystal size distributions (CSDs) of the Kepsut volcanic complex (NW Turkey)

2019 ◽  
Vol 181 ◽  
pp. 103889 ◽  
Author(s):  
Ömer Kamacı ◽  
Şafak Altunkaynak
2014 ◽  
Vol 14 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Huayu Li ◽  
Yoshiaki Kawajiri ◽  
Martha A. Grover ◽  
Ronald W. Rousseau

1985 ◽  
Vol 57 ◽  
Author(s):  
Uwe Köster ◽  
Margret Blank-Bewersdorff

AbstractCrystallization kinetics and crystal size distributions in Co33Zr67-glasses have been analyzed by quantitative electron microscopy. The polymorphic crystallization of spherical CoZr2 crystals is very suitable reaction for such an analysis. Calculated crystal size distributions at different temperatures were compared to those experimentally revealed. Parameters controlling crystallization were varied within reasonable limits until theoretically calculated and experimentally observed crystal size distributions were in good agreement. It has been found that crystal size distribution can be explained by transient nucleation; the time lag and its temperature dependence can be evaluated. These results are discussed in the light of recent theories on transient nucleation.


2021 ◽  
Author(s):  
Alp Ünal ◽  
Şafak Altunkaynak

<p>Balıkesir Volcanites (BV) are included into the Balıkesir Volcanic Province and contain various products of Oligo-Miocene volcanic activity in NW Anatolia. BV are formed from trachyandesite, andesite and dacite lavas with associated pyroclastic rocks. In this study, we report the petrographical investigations, mineral chemistry results and geothermobarometry calculations of the Balıkesir Volcanites in order to deduce the magma chamber processes and crystallization conditions. Andesites present a mineral composition of plagioclase (An35–50) + amphibole (edenitic hornblende) +biotite ± quartz and opaque minerals. The major phenocryst phases in dacite lavas are plagioclase (An39–53), quartz, amphibole (magnesio-hornblende), biotite, sanidine and opaque minerals. The mineral composition of the trachyandesites, on the other hand, is represented by plagioclase (An38–57) + amphibole (pargasitic hornblende) + biotite + clinopyroxene (endiopside- augite) ± sanidine ± quartz ± opaque minerals. Balıkesir Volcanites present distinct textural properties such as rounded plagioclase phenocrysts with reaction rims, oscillatory zoning, honeycomb and sieve textures in plagioclase, reverse mantled biotite and hornblende crystals. The plagioclase- amphibole geothermobarometry calculations of Balıkesir volcanites indicate that, andesite and dacite lavas present similar crystallization temperature and pressures conditions of 798- 813°C and 1,98- 2.17 kbar. Oppositely, trachyandesites were crystallized under 857°C and 3,72 kbar temperature and pressure conditions. These results show that the andesite and dacite lavas were originated from the same magma chamber with the depth of 7km whereas trachyandesites were evolved in a deeper magma chamber with 13 km depth. Combined mineral chemistry, petrography and geothermobarometry studies indicate that the open system processes such as magma mixing/mingling and/or assimilation fractional crystallization (AFC) were responsible for the textural and compositional variations of the Balıkesir Volcanites.</p>


Sign in / Sign up

Export Citation Format

Share Document