Carbon and oxygen isotopes of calcified root cells, carbonate nodules and total inorganic carbon in the Chinese loess–paleosol sequence: The application of paleoenvironmental studies

2020 ◽  
Vol 201 ◽  
pp. 104515
Author(s):  
Xi Luo ◽  
Hong Wang ◽  
Zhisheng An ◽  
Zeke Zhang ◽  
Weiguo Liu
2021 ◽  
pp. 1-15
Author(s):  
Hugh C. Jenkyns ◽  
Sophie Macfarlane

Abstract Two fallen blocks of the Marlstone and stratigraphically overlying Junction Bed sampled on the beach below Doghouse Cliff in Dorset, UK (Wessex Basin) have been examined for carbon and oxygen isotopes of bulk carbonate as well as for strontium, carbon and oxygen isotopes and Mg:Ca ratios in the contained belemnites. The sequence, which contains most of the Toarcian zones and subzones within a metre or less of grey to yellow to pink, red and brown fossil-rich nodular limestone, is extremely condensed and lithologically similar to pelagic red limestones of the Tethyan Jurassic that are locally mineralized with Fe-Mn oxyhydroxides (e.g., Rosso Ammonitico). Strontium-isotope ratios of the contained belemnites are compatible with existing reference curves and both blocks show a rise to more radiogenic values post-dating the Pliensbachian–Toarcian boundary. The high degree of correlation between the relatively negative carbon and oxygen isotopes of the bulk carbonate is compatible with significant diagenetic overprint, and contrasts with higher carbon-isotope values in coeval condensed coccolith-rich limestones elsewhere. Evidence for the characteristic signature of the Toarcian Oceanic Anoxic Event, as represented by organic-rich sediment, is absent, possibly owing to a stratigraphic gap. Both blocks exhibit abrupt carbon-isotope shifts to lower values, one of which could represent the limbs of an incompletely recorded negative excursion associated with the Toarcian Oceanic Anoxic Event. That the Toarcian Oceanic Anoxic Event was also a significant hyperthermal is illustrated in both blocks by a drop in oxygen-isotope values and rise in Mg:Ca ratios of belemnites close to the base of the Junction Bed in the lowest part of the serpentinum zone.


2018 ◽  
Vol 15 (16) ◽  
pp. 5221-5236 ◽  
Author(s):  
Thibaut Wagener ◽  
Nicolas Metzl ◽  
Mathieu Caffin ◽  
Jonathan Fin ◽  
Sandra Helias Nunige ◽  
...  

Abstract. The western tropical South Pacific was sampled along a longitudinal 4000 km transect (OUTPACE cruise, 18 February, 3 April 2015) for the measurement of carbonate parameters (total alkalinity and total inorganic carbon) between the Melanesian Archipelago (MA) and the western part of the South Pacific gyre (WGY). This paper reports this new dataset and derived properties: pH on the total scale (pHT) and the CaCO3 saturation state with respect to aragonite (Ωara). We also estimate anthropogenic carbon (CANT) distribution in the water column using the TrOCA method (Tracer combining Oxygen, inorganic Carbon and total Alkalinity). Along the OUTPACE transect a deeper penetration of CANT in the intermediate waters was observed in the MA, whereas highest CANT concentrations were detected in the subsurface waters of the WGY. By combining our OUTPACE dataset with data available in GLODAPv2 (1974–2009), temporal changes in oceanic inorganic carbon were evaluated. An increase of 1.3 to 1.6 µmol kg−1 a−1 for total inorganic carbon in the upper thermocline waters is estimated, whereas CANT increases by 1.1 to 1.2 µmol kg−1 a−1. In the MA intermediate waters (27 kg m−3 <σθ<27.2 kg m−3) an increase of 0.4 µmol kg−1 a−1 CANT is detected. Our results suggest a clear progression of ocean acidification in the western tropical South Pacific with a decrease in the oceanic pHT of up to −0.0027 a−1 and a shoaling of the saturation depth for aragonite of up to 200 m since the pre-industrial period.


Sign in / Sign up

Export Citation Format

Share Document