recent sediments
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 43)

H-INDEX

54
(FIVE YEARS 3)

Zootaxa ◽  
2022 ◽  
Vol 5091 (1) ◽  
pp. 1-55
Author(s):  
EUGENE W. BERGH ◽  
JOHN S. COMPTON

Middle Miocene foraminifera from the northern Namibian outer continental shelf are indicators of a period prior to the initiation of the Benguela Upwelling System (BUS). This study provides an update to the occurrence and taxonomy of Miocene foraminifera from the continental margin of Namibia. The taxonomy of 51 benthic and 12 planktic foraminiferal species from the northern Namibian shelf are discussed, their stratigraphic significance given, and their ecological preferences and regional distribution summarised within this study. The identification of extinct planktic foraminifera provided key stratigraphic control for the middle Miocene strata of this region. The taxa identified in this study provide a distinct and different assemblage to the overlying younger strata. Many of the species recorded in this study have not been identified in the region and are reported for the first time from the middle Miocene on the southwestern continental shelf of Africa, off Namibia. A total of 47 species are identified and discussed for the first time from this region. Nineteen species recorded in this study are extinct and eleven taxa reported here have previously only been reported on the genus level on the southwestern shelf of South Africa. Seven benthic species (Amphicoryna scalaris, Marginulina obesa, Glandulina laevigata, Globocassidulina subglobosa, Uvigerina peregrina, Sphaeroidina bulloides and Melonis affinis) and two planktic species (Globigerina bulloides and Orbulina universa) did not disappear from the regional stratigraphy and continued to occur in Plio-Pleistocene to Recent sediments along the southwestern continental shelf of Africa.  


Author(s):  
Jose María Abril

Lead-210 from natural atmospheric fallout is widely used in multidisciplinary studies to date recent sediments. Some of the 210Pb-based dating models can produce historical records of sediment accumulation rates (SAR) and initial activity concentrations ( ). The former have been profusely used to track past changes in the sedimentary conditions. Both physical magnitudes are differently affected by model errors (those arising for the partial or null accomplishment of some model assumptions). This work is aimed at assessing the effects on SAR and of model errors in the CRS, CS, PLUM and TERESA dating models, due to random variability in 210Pb fluxes, which is a usual sedimentary condition. Synthetic cores are used as virtual laboratories for this goal. Independently of the model choice, SARs are largely affected by model errors, resulting in some large and spurious deviations from the true values. This questions their general use for tracking past environmental changes. are less sensitive to model errors and their trends of change with time may reflect real changes in sedimentary conditions, as it is shown with some real cores from varved sediments.


2021 ◽  
Author(s):  
◽  
Oscar Clark

<p>Palmyra Atoll is an isolated carbonate reef system located approximately 1600 km south of Hawaii in the northern Line Islands, central Pacific Ocean. Sediment samples from the lagoons and tidal zones were analyzed for grainsize and composition, and the results used to compile detailed maps and interpret the environments and lithofacies present. A distinct grainsize distribution was observed forming concentric bands ranging from coarse gravel rubble on the outer reef through to finer material in the interior of the atoll in the deep lagoons, where peloidal muds prevail. Five lithologic facies have been identified and typical sediments are poorly sorted and near-symmetrical in their grainsize distribution. On average, sediments are medium sand. A distinct chlorozoan assemblage was observed with coral and calcareous red algal fragments forming half of the sediment, with varying amounts of molluscs, Halimeda and foraminifera being the lesser major constituents. Lagoonal and tidal sediments showed little variation in composition between locations and lacked clear compositional zonation, characteristic of other larger atolls of the Pacific. Palmyra Atoll is unique in that it has had little human intervention for the last sixty years and as a result uninhibited natural processes are occurring. It is also unique in that it displays relatively deep for its size (<55 m), steep-sided compartmentalized lagoons that have abundant fine material (upward of 70% silt or finer), a feature not commonly observed at other Pacific atolls. This fine material has been identified as a peloidal mud and its mode and rate of deposition may be partly controlled by the abundant zooplankton in the lagoons. Recent sediments of Palmyra Atoll are almost entirely carbonate, originating from reef organisms inhabiting the atoll. The only other material is small amounts of siliceous sponge skeletons.</p>


2021 ◽  
Author(s):  
◽  
Oscar Clark

<p>Palmyra Atoll is an isolated carbonate reef system located approximately 1600 km south of Hawaii in the northern Line Islands, central Pacific Ocean. Sediment samples from the lagoons and tidal zones were analyzed for grainsize and composition, and the results used to compile detailed maps and interpret the environments and lithofacies present. A distinct grainsize distribution was observed forming concentric bands ranging from coarse gravel rubble on the outer reef through to finer material in the interior of the atoll in the deep lagoons, where peloidal muds prevail. Five lithologic facies have been identified and typical sediments are poorly sorted and near-symmetrical in their grainsize distribution. On average, sediments are medium sand. A distinct chlorozoan assemblage was observed with coral and calcareous red algal fragments forming half of the sediment, with varying amounts of molluscs, Halimeda and foraminifera being the lesser major constituents. Lagoonal and tidal sediments showed little variation in composition between locations and lacked clear compositional zonation, characteristic of other larger atolls of the Pacific. Palmyra Atoll is unique in that it has had little human intervention for the last sixty years and as a result uninhibited natural processes are occurring. It is also unique in that it displays relatively deep for its size (<55 m), steep-sided compartmentalized lagoons that have abundant fine material (upward of 70% silt or finer), a feature not commonly observed at other Pacific atolls. This fine material has been identified as a peloidal mud and its mode and rate of deposition may be partly controlled by the abundant zooplankton in the lagoons. Recent sediments of Palmyra Atoll are almost entirely carbonate, originating from reef organisms inhabiting the atoll. The only other material is small amounts of siliceous sponge skeletons.</p>


2021 ◽  
Vol 80 (8) ◽  
Author(s):  
Zakhar Slukovskii ◽  
Maxim Medvedev ◽  
Alexandr Mitsukov ◽  
Vladimir Dauvalter ◽  
Vasiliy Grigoriev ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Germán Flor-Blanco ◽  
Efrén García-Ordiales ◽  
Raul Ruiz-Quesada ◽  
Luis Pando ◽  
Germán Flor

&lt;p&gt;The sedimentological and geochemical evolution of the internal platform located in front of the Llumeres cove (Asturias, North of Spain) has been studied, based on the analysis of selected sediment samples from 5 long corers, approximately 2 m thick, recovered for an offshore structures installation project. In each sample, a granulometric characterization has been carried out by the calculation of granulometric parameters (centile, mean, shorting, etc.) and the mineralogical composition (silica/biogenic carbonates). Geochemical analysis has also been made in the samples.&amp;#160; The enrichment of selected heavy metals and metalloids (Zn, As, Cu, Pb and Hg) has been studied, applying the Geo-accumulation Index (Igeo) and the Enrichment Factor (EF). The results have also been subjected to multivariate and bivariate statistical analyzes that have allowed establishing the relationships between the elements and determining in a preliminary way their potential origin.&lt;/p&gt;&lt;p&gt;The sedimentological results point to the fact that the sediment was incorporated into the internal platform during the last stages of the sea level rise, which began some 20,000 years ago (Pleisto-Holocene transgression). At present, the zone enjoys stability, since no sedimentation is detected. These sediments are relict, without existing agreement with the siliciclastic sedimentation that is taking place at the moment in the coastal zone (Llumeres beach). Three main sandy lithologies have been analyzed: siliciclastic, mixed and carbonate sands which are distributed irregularly in the vertical. This is indicative of changes in the origin of the sediment (siliciclastic, due to the coastal drift current and bioclastic, typical from the platform), as well as the energy of the depositional agent with a clear decrease in size towards the top, detecting relatively large variations in size and the coarse sediments would correspond to moments of storm.&lt;/p&gt;&lt;p&gt;The geochemical results show that the area does not have a remarkable anthropic condition along the sedimentological profile. However, enrichment of some potential contaminants was detected in the more recent sediments (first centimeters of the boreholes), but the enrichment does not appear to pose an environmental risk and their origin seem to be related to nearby areas such as the Nal&amp;#243;n River or the industrial area of Aviles that may export contaminants to the marine environment.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document