Extensional fault-propagation folds: mechanical models and observations from the Modoc Plateau, northeastern California

2006 ◽  
Vol 28 (7) ◽  
pp. 1352-1370 ◽  
Author(s):  
Ian R. White ◽  
Juliet G. Crider
2003 ◽  
Vol 25 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Néstor Cardozo ◽  
Kavi Bhalla ◽  
Alan T Zehnder ◽  
Richard W Allmendinger

2019 ◽  
Vol 31 (7) ◽  
pp. 1210
Author(s):  
Zhongqi Wu ◽  
Jianwei Guo ◽  
Jun Xiao ◽  
Xiangyong Zeng ◽  
Ying Wang ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 4062
Author(s):  
Grzegorz Zboiński ◽  
Magdalena Zielińska

This paper concerns the algorithm of transition piezoelectric elements for adaptive analysis of electro-mechanical systems. In addition, effectivity of the proposed elements in such an analysis is presented. The elements under consideration are assigned for joining basic elements which correspond to the mechanical models of either the first or higher order, while the electric model is of arbitrary order. In this work, three variants of the transition models are applied. The first one assures continuity of displacements between the basic models and continuity of electric potential between these models, as well. The second transition piezoelectric model guarantees additional continuity of the stress field between the basic models. The third transition model additionally enables continuous change of the strain state between the basic models. Based on the mentioned models, three types of the corresponding transition finite elements are introduced. The applied finite element approximations are hpq/hp-adaptive ones, which allows element-wise changes of the element size parameter h, and the element longitudinal and transverse orders of approximation, respectively, p and q, depending on the error level. Numerical effectiveness of the models and their approximations is investigated in the contexts of: ability to remove high stress gradients between the basic and transition models, and convergence of the numerical solutions for the model problems of piezoelectrics with and without the proposed transition elements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Shu ◽  
Daniel Galles ◽  
Ottman A. Tertuliano ◽  
Brandon A. McWilliams ◽  
Nancy Yang ◽  
...  

AbstractThe study of microstructure evolution in additive manufacturing of metals would be aided by knowing the thermal history. Since temperature measurements beneath the surface are difficult, estimates are obtained from computational thermo-mechanical models calibrated against traces left in the sample revealed after etching, such as the trace of the melt pool boundary. Here we examine the question of how reliable thermal histories computed from a model that reproduces the melt pool trace are. To this end, we perform experiments in which one of two different laser beams moves with constant velocity and power over a substrate of 17-4PH SS or Ti-6Al-4V, with low enough power to avoid generating a keyhole. We find that thermal histories appear to be reliably computed provided that (a) the power density distribution of the laser beam over the substrate is well characterized, and (b) convective heat transport effects are accounted for. Poor control of the laser beam leads to potentially multiple three-dimensional melt pool shapes compatible with the melt pool trace, and therefore to multiple potential thermal histories. Ignoring convective effects leads to results that are inconsistent with experiments, even for the mild melt pools here.


Sign in / Sign up

Export Citation Format

Share Document