Deformation patterns and structural vergence in brittle–ductile thrust wedges: An additional analogue modelling perspective

2007 ◽  
Vol 29 (1) ◽  
pp. 141-158 ◽  
Author(s):  
Marco Bonini
2018 ◽  
Vol 189 (3) ◽  
pp. 14 ◽  
Author(s):  
Denis Gapais

Many Archaean and Paleoproterozoic cratons show deformation patterns that differ from those observed in modern orogens. On the other hand, they constitute an important part of present-day emerged continents and contain a large part of continental mineral resources known to date. On the basis of a summary of structural data from some typical field examples and of results of analogue modelling, we emphasize that pop-down tectonics marked by vertical burial of supracrustals within an underlying hot and weak crust may be the most suitable model to account for deformation patterns of many ancient deformation zones. An overview of relationships between structural patterns and mineralisation in several ancient deformation zones further emphasizes that pop-down tectonics provides a very promising structural framework for mining exploration in Precambrian cratons.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2018 ◽  
Vol 46 (2) ◽  
pp. 78-92 ◽  
Author(s):  
A. I. Kubba ◽  
G. J. Hall ◽  
S. Varghese ◽  
O. A. Olatunbosun ◽  
C. J. Anthony

ABSTRACT This study presents an investigation of the inner tire surface strain measurement by using piezoelectric polymer transducers adhered on the inner liner of the tire, acting as strain sensors in both conventional and dual-chamber tires. The piezoelectric elements generate electrical charges when strain is applied. The inner liner tire strain can be found from the generated charge. A wireless data logger was employed to measure and transmit the measured signals from the piezoelectric elements to a PC to store and display the readout signals in real time. The strain data can be used as a monitoring system to recognize tire-loading conditions (e.g., traction, braking, and cornering) in smart tire technology. Finite element simulations, using ABAQUS, were employed to estimate tire deformation patterns in both conventional and dual-chamber tires for pure rolling and steady-state cornering conditions for different inflation pressures to simulate on-road and off-road riding tire performances and to compare with the experimental results obtained from both the piezoelectric transducers and tire test rig.


2019 ◽  
Vol 126 ◽  
pp. 175-197 ◽  
Author(s):  
A.S. Gomes ◽  
F.M. Rosas ◽  
J.C. Duarte ◽  
W.P. Schellart ◽  
J. Almeida ◽  
...  

2018 ◽  
Vol 482 ◽  
pp. 193-200 ◽  
Author(s):  
Jürgen W. Neuberg ◽  
Amy S.D. Collinson ◽  
Patricia A. Mothes ◽  
Mario C. Ruiz ◽  
Santiago Aguaiza

2010 ◽  
Vol 75 (1) ◽  
pp. 267-277 ◽  
Author(s):  
Zuzana Kratinová ◽  
Matej Machek ◽  
Vladimír Kusbach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document