Interferon Regulatory Factor-1 (IRF-1) Contributes to Hepatic Ischemia Reperfusion Injury in Allogeneic Liver Transplantation

2014 ◽  
Vol 186 (2) ◽  
pp. 577-578
Author(s):  
S. Yokota ◽  
S. Kimura ◽  
J.R. Klune ◽  
Q. Du ◽  
L. Dou ◽  
...  
2018 ◽  
Vol 48 (1) ◽  
pp. 328-338 ◽  
Author(s):  
Zilin Cui ◽  
Shipeng Li ◽  
Zirong Liu ◽  
Yamin Zhang ◽  
Haiming Zhang

Background/Aims: Interferon regulatory factor 1(IRF-1) and high mobility group box 1(HMGB1) have been independently identified as being key players in hepatic ischemia-reperfusion injury (IRI). We attempted to determine whether IRF-1 activates autophagy to aggravate hepatic IRI by increasing HMGB1 release. Methods: The hepatic IRI model was generated in C57BL/6 mice, euthanized at 2, 6, 12 or 24 h after reperfusion. To examine the effects of HMGB1 release inhibition, Glycyrrhiza acid (GA) was administered to the mice and at six hours after injectiont. AML12 cells were immersed in mineral oil for 90 min and then cultured in complete Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 to simulate IRI. AML12 cells were treated with IRF-1 siRNA, Ad-IRF-1 or GA. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Next, autophagic vacuoles were detected by transmission electron microscopy (TEM) or LC3 dots. The expression of IRF-1 and HMGB1 mRNA were measured by real-time polymerase chain reaction. The expression of IRF-1, microtubule-associated protein 1 light chain 3 (LC3), Bcl-2, Beclin 1, HMGB1 were detected by western blotting or immunohistochemistry. Results: The levels of hepatic IRF-1, mRNA and protein were significantly increased in livers after exposure to IRI, together with, IRI-induced increase of HMGB1 mRNA and release of HMGB1 in liver tissue. Knockout of IRF-1 decreased expression and release of HMGB1 in liver, and inhibiting the release of HMGB1 could alleviate hepatic IRI. In addition, knockout of IRF-1 downregulated LC3II and Beclin1, while number of autophagosomes or LC3 dots were increased. Up-regulating IRF-1 expression could increase the levels of LC3Ⅱ expression in AML12 cells after exposure to IRI. The levels of HMGB1 in Ad-IRF-1 transfected AML12 cell supernatants increased, together with number of LC3 dots increasing. However, GA could inhibit both Ad-IRF-1 induced HMGB1 release and the increase in the number of LC3 dots. Conclusions: IRF-1 activates autophagy to aggravate hepatic IRI by increasing HMGB1 release.


2012 ◽  
Vol 303 (5) ◽  
pp. G666-G673 ◽  
Author(s):  
John R. Klune ◽  
Rajeev Dhupar ◽  
Shoko Kimura ◽  
Shinya Ueki ◽  
Jon Cardinal ◽  
...  

Interferon regulatory factor (IRF)-1 is a nuclear transcription factor that induces inflammatory cytokine mediators and contributes to hepatic ischemia-reperfusion (I/R) injury. No strategies to mitigate IRF1-mediated liver damage exist. IRF2 is a structurally similar endogenous protein that competes with IRF1 for DNA binding sites in IRF-responsive target genes and acts as a competitive inhibitor. However, the role of IRF2 in hepatic injury during hypoxic or inflammatory conditions is unknown. We hypothesize that IRF2 overexpression may mitigate IRF1-mediated I/R damage. Endogenous IRF2 is basally expressed in normal livers and is mildly increased by ischemia alone. Overexpression of IRF2 protects against hepatic warm I/R injury. Furthermore, we demonstrate that IRF2 overexpression limits production of IRF1-dependent proinflammatory genes, such as IL-12, IFNβ, and inducible nitric oxide synthase, even in the presence of IRF1 induction. Additionally, isograft liver transplantation with IRF2 heterozygote knockout (IRF2+/−) donor grafts that have reduced endogenous IRF2 levels results in worse injury following cold I/R during murine orthotopic liver transplantation. These findings indicate that endogenous intrahepatic IRF2 protein is protective, because the IRF2-deficient liver donor grafts exhibited increased liver damage compared with the wild-type donor grafts. In summary, IRF2 overexpression protects against I/R injury by decreasing IRF1-dependent injury and may represent a novel therapeutic strategy.


2015 ◽  
Vol 62 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Pi-Xiao Wang ◽  
Ran Zhang ◽  
Ling Huang ◽  
Li-Hua Zhu ◽  
Ding-Sheng Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document