Fundamental mode shape and its derivatives in structural damage localization

2013 ◽  
Vol 332 (21) ◽  
pp. 5584-5593 ◽  
Author(s):  
Koushik Roy ◽  
Samit Ray-Chaudhuri
Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5964
Author(s):  
Shancheng Cao ◽  
Huajiang Ouyang ◽  
Chao Xu

Mode shape-based structural damage identification methods have been widely investigated due to their good performances in damage localization. Nevertheless, the evaluation of mode shapes is severely affected by the measurement noise. Moreover, the conventional mode shape-based damage localization methods are normally proposed based on a certain mode and not effective for multi-damage localization. To tackle these problems, a novel damage localization approach is proposed based on locally perturbed dynamic equilibrium and data fusion approach. The main contributions cover three aspects. Firstly, a joint singular value decomposition technique is proposed to simultaneously decompose several power spectral density transmissibility matrices for robust mode shape estimation, which statistically deals better with the measurement noise than the traditional transmissibility-based methods. Secondly, with the identified mode shapes, an improved pseudo-excitation method is proposed to construct a baseline-free damage localization index by quantifying the locally damage perturbed dynamic equilibrium without the knowledge of material/structural properties. Thirdly, to circumvent the conflicting damage information in different modes and integrate it for robust damage localization, a data fusion scheme is developed, which performs better than the Bayesian fusion approach. Both numerical and experimental studies of cantilever beams with two cracks were conducted to validate the feasibility and effectiveness of the proposed damage localization method. It was found that the proposed method outperforms the traditional transmissibility-based methods in terms of localization accuracy and robustness.


2019 ◽  
Vol 19 (10) ◽  
pp. 1950124 ◽  
Author(s):  
Wen-Yu He ◽  
Jian He ◽  
Wei-Xin Ren

Mode shapes estimated from the vehicle responses are normally used to detect bridge damage efficiently for their high spatial resolution. However, an updated baseline finite element model (FEM) is normally required to quantify damages for such an approach. A two-stage damage detection procedure is presented for bridges by utilizing the mode shape estimated from a moving vehicle. Damage locations are first determined through a damage localization index (DLI) defined by regional mode shape curvature (RMSC). Then the relationship between the damage extents and the RMSC changes is investigated by FEM simulation. Finally, an equation set to quantify the single and multiple damages is deduced by combining the RMSCs and the relationship between the damage extents and the RMSC changes established by an un-updated FEM. Numerical and experimental examples are carried out to verify the validity and efficiency of the two-stage method. The results revealed that it can localize and quantify damages with satisfactory precision by using the response measured from one sensor only.


2021 ◽  
pp. 107754632110069
Author(s):  
Sandeep Sony ◽  
Ayan Sadhu

In this article, multivariate empirical mode decomposition is proposed for damage localization in structures using limited measurements. Multivariate empirical mode decomposition is first used to decompose the acceleration responses into their mono-component modal responses. The major contributing modal responses are then used to evaluate the modal energy for the respective modes. A damage localization feature is proposed by calculating the percentage difference in the modal energies of damaged and undamaged structures, followed by the determination of the threshold value of the feature. The feature of the specific sensor location exceeding the threshold value is finally used to identify the location of structural damage. The proposed method is validated using a suite of numerical and full-scale studies. The validation is further explored using various limited measurement cases for evaluating the feasibility of using a fewer number of sensors to enable cost-effective structural health monitoring. The results show the capability of the proposed method in identifying as minimal as 2% change in global modal parameters of structures, outperforming the existing time–frequency methods to delineate such minor global damage.


2018 ◽  
Vol 31 (6) ◽  
pp. 794-803
Author(s):  
Rong He ◽  
Yafei Zhu ◽  
Wei He ◽  
Huai Chen

Sign in / Sign up

Export Citation Format

Share Document