scholarly journals Identification of backbone curves of nonlinear systems from resonance decay responses

2015 ◽  
Vol 348 ◽  
pp. 224-238 ◽  
Author(s):  
Julián M. Londoño ◽  
Simon A. Neild ◽  
Jonathan E. Cooper
Author(s):  
Dongxiao Hong ◽  
Thomas L. Hill ◽  
Simon A. Neild

Isolated backbone curves represent significant dynamic responses of nonlinear systems; however, as they are disconnected from the primary responses, they are challenging to predict and compute. To explore the conditions for the existence of isolated backbone curves, a generalized two-mode system, which is representative of two extensively studied examples, is used. A symmetric two-mass oscillator is initially studied and, as has been previously observed, this exhibits a perfect bifurcation between its backbone curves. As this symmetry is broken, the bifurcation splits to form an isolated backbone curve. Here, it is demonstrated that this perfect bifurcation, indicative of a symmetric structure, may be preserved when the symmetry is broken under certain conditions; these are derived analytically. With the symmetry broken, the second example—a single-mode nonlinear structure with a nonlinear tuned mass damper—is considered. The evolution of the system's backbone curves is investigated in nonlinear parameter space. It is found that this space can be divided into several regions, within which the backbone curves share similar topological features, defining the conditions for the existence of isolated backbone curves. This allows these features to be more easily accounted for, or eliminated, when designing nonlinear systems.


Volume 2 ◽  
2004 ◽  
Author(s):  
D. F. Shi ◽  
G. Dimitriadis

For the purpose of constructing the backbone of nonlinear systems, the Interpolated Short Time Fourier Transform (ISTFT) is proposed as a means to improve the estimation accuracy of the instantaneous amplitudes and frequencies of response signals. It is shown that the backbone curves estimated by the ISTFT agree with theoretical backbone curves very well. Additionally, the restoring force can be reconstructed to specify the type of nonlinear stiffness. A curve-fitting technique is introduced to estimate the parameters of nonlinear systems on the basis of theoretical backbone curves. It is shown that a number of typical nonlinear stiffness functions such as cubic, bilinear and pre-compressed springs can be identified accurately using this new method.


Sign in / Sign up

Export Citation Format

Share Document