Structural damage detection using sparse sensors installation by optimization procedure based on the modal flexibility matrix

2016 ◽  
Vol 381 ◽  
pp. 65-82 ◽  
Author(s):  
A. Zare Hosseinzadeh ◽  
G. Ghodrati Amiri ◽  
S.A. Seyed Razzaghi ◽  
K.Y. Koo ◽  
S.H. Sung
Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2011 ◽  
Vol 243-249 ◽  
pp. 5475-5480
Author(s):  
Zhang Jun

Modals of BP neural networks with different inputs and outputs are presented for different damage detecting schemes. To identify locations of structural damages, the regular vectors of changes in modal flexibility are looked on as inputs of the networks, and the state of localized damage are as outputs. To identify extents of structural damage, parameters combined with changes in flexibility and the square changes in frequency are as inputs of the networks, and the state of damage extents are as outputs. Examples of a simply supported beam and a plate show that the BP neural network modal can detect damage of structures in quantitative terms.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Q. W. Yang ◽  
J. K. Liu ◽  
C.H. Li ◽  
C.F. Liang

Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods.


2013 ◽  
Vol 681 ◽  
pp. 271-275
Author(s):  
Jing Li ◽  
Pei Jun Wei

Based on the vibration information, a mixed sensitivity method is presented to identify structural damage by combining the eigenvalue sensitivity with the generalized flexibility sensitivity. The sensitivity of structural generalized flexibility matrix is firstly derived by using the first frequency and the corresponding mode shape only and then the eigenvalue sensitivity together with the generalized flexibility sensitivity are combined to calculate the elemental damage parameters. The presented mixed perturbation approach is demonstrated by a numerical example concerning a simple supported beam structure. It has been shown that the proposed procedure is simple to implement and may be useful for structural damage identification.


2012 ◽  
Vol 594-597 ◽  
pp. 1074-1077 ◽  
Author(s):  
Jing Li

Based on the generalized flexibility matrix, a method for detecting structural damage is presented in this paper. The generalized flexibility matrix is approximately constructed by using the first frequency and the corresponding mode shape only. Then the difference of generalized flexibility curvature between undamaged and damaged state is used to detect the possible damaged elements. Finally, a numerical example concerning a simple supported beam is used to illustrate the effectiveness of the proposed method.


AIAA Journal ◽  
2012 ◽  
Vol 50 (5) ◽  
pp. 1072-1078 ◽  
Author(s):  
Jing Li ◽  
Zhengguang Li ◽  
Huixiang Zhong ◽  
Baisheng Wu

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhao ◽  
Zili Xu ◽  
Xuanen Kan ◽  
Jize Zhong ◽  
Tian Guo

Damage can be identified using generalized flexibility matrix based methods, by using the first natural frequency and the corresponding mode shape. However, the first mode is not always appropriate to be used in damage detection. The contact interface of rod-fastened-rotor may be partially separated under bending moment which decreases the flexural stiffness of the rotor. The bending moment on the interface varies as rotating speed changes, so that the first- and second-modal parameters obtained are corresponding to different damage scenarios. In this paper, a structural damage detection method requiring single nonfirst mode is proposed. Firstly, the system is updated via restricting the first few mode shapes. The mass matrix, stiffness matrix, and modal parameters of the updated system are derived. Then, the generalized flexibility matrix of the updated system is obtained, and its changes and sensitivity to damage are derived. The changes and sensitivity are used to calculate the location and severity of damage. Finally, this method is tested through numerical means on a cantilever beam and a rod-fastened-rotor with different damage scenarios when only the second mode is available. The results indicate that the proposed method can effectively identify single, double, and multiple damage using single nonfirst mode.


Sign in / Sign up

Export Citation Format

Share Document