scholarly journals Structural Damage Detection by Using Single Natural Frequency and the Corresponding Mode Shape

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhao ◽  
Zili Xu ◽  
Xuanen Kan ◽  
Jize Zhong ◽  
Tian Guo

Damage can be identified using generalized flexibility matrix based methods, by using the first natural frequency and the corresponding mode shape. However, the first mode is not always appropriate to be used in damage detection. The contact interface of rod-fastened-rotor may be partially separated under bending moment which decreases the flexural stiffness of the rotor. The bending moment on the interface varies as rotating speed changes, so that the first- and second-modal parameters obtained are corresponding to different damage scenarios. In this paper, a structural damage detection method requiring single nonfirst mode is proposed. Firstly, the system is updated via restricting the first few mode shapes. The mass matrix, stiffness matrix, and modal parameters of the updated system are derived. Then, the generalized flexibility matrix of the updated system is obtained, and its changes and sensitivity to damage are derived. The changes and sensitivity are used to calculate the location and severity of damage. Finally, this method is tested through numerical means on a cantilever beam and a rod-fastened-rotor with different damage scenarios when only the second mode is available. The results indicate that the proposed method can effectively identify single, double, and multiple damage using single nonfirst mode.

2013 ◽  
Vol 681 ◽  
pp. 271-275
Author(s):  
Jing Li ◽  
Pei Jun Wei

Based on the vibration information, a mixed sensitivity method is presented to identify structural damage by combining the eigenvalue sensitivity with the generalized flexibility sensitivity. The sensitivity of structural generalized flexibility matrix is firstly derived by using the first frequency and the corresponding mode shape only and then the eigenvalue sensitivity together with the generalized flexibility sensitivity are combined to calculate the elemental damage parameters. The presented mixed perturbation approach is demonstrated by a numerical example concerning a simple supported beam structure. It has been shown that the proposed procedure is simple to implement and may be useful for structural damage identification.


2012 ◽  
Vol 204-208 ◽  
pp. 2907-2912
Author(s):  
Guang Qian Du ◽  
Chang Zhi Zhu ◽  
Li Juan Long ◽  
Meng Zhang

On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.


2012 ◽  
Vol 594-597 ◽  
pp. 1074-1077 ◽  
Author(s):  
Jing Li

Based on the generalized flexibility matrix, a method for detecting structural damage is presented in this paper. The generalized flexibility matrix is approximately constructed by using the first frequency and the corresponding mode shape only. Then the difference of generalized flexibility curvature between undamaged and damaged state is used to detect the possible damaged elements. Finally, a numerical example concerning a simple supported beam is used to illustrate the effectiveness of the proposed method.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2019 ◽  
Vol 19 (1) ◽  
pp. 322-336 ◽  
Author(s):  
Yongfeng Xu

Research works on photogrammetry have received tremendous attention in the past few decades. One advantage of photogrammetry is that it can measure displacement and deformation of a structure in a fully non-contact, full-field manner. As a non-destructive evaluation method, photogrammetry can be used to detect structural damage by identifying local anomalies in measured deformation of a structure. Numerous methods have been proposed to measure deformations by tracking exterior features of structures, assuming that the features can be consistently identified and tracked on sequences of digital images captured by cameras. Such feature-tracking methods can fail if the features do not exist on captured images. One feasible solution to the potential failure is to artificially add exterior features to structures. However, painting and mounting such features can introduce unwanted permanent surficial modifications, mass loads, and stiffness changes to structures. In this article, a photogrammetry-based structural damage detection method is developed, where a visible laser line is projected to a surface of a structure, serving as an exterior feature to be tracked; the projected laser line is massless and its existence is temporary. A laser-line-tracking technique is proposed to track the projected laser line on captured digital images. Modal parameters of a target line corresponding to the projected laser line can be estimated by conducting experimental modal analysis. By identifying anomalies in curvature mode shapes of the target line and mapping the anomalies to the projected laser line, structural damage can be detected with identified positions and sizes. An experimental investigation of the damage detection method was conducted on a damaged beam. Modal parameters of a target line corresponding to a projected laser line were estimated, which compared well with those from a finite element model of the damaged beam. Experimental damage detection results were validated by numerical ones from the finite element model.


Author(s):  
Shuncong Zhong ◽  
S. Olutunde Oyadiji

This paper proposes a response-only method in frequency domain for structural damage detection by using the derivative of natural frequency curve of beam-like structures with a traversing auxiliary mass. The approach just uses the response time history of beam-like structures and does not need the external source of force excitation. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in flexibility and inertia of the beam as the auxiliary mass is traversed along the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitating locating the damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the Fast Fourier Transform of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. A spectrum correction method is employed to estimate high accurate frequencies of structures with a traversing auxiliary mass. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the Finite Element Analysis. The graphical plots of the natural frequencies versus axial location of auxiliary mass are obtained. The derivatives of natural frequency curve can provide crack information for damage detection of beam-like structures. However, it is suggested that the derivative do not go beyond the third derivative of natural frequency curves to avoid the difference approximation error which will be magnified at higher derivative. The sensitivity of crack index for different noise, crack depth, auxiliary mass and damping ratio are also investigated. The simulated result demonstrated the efficiency and precision of the response-only frequency-domain method which can be recommended for the real application in structural damage detection.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Q. W. Yang ◽  
J. K. Liu ◽  
C.H. Li ◽  
C.F. Liang

Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods.


Author(s):  
W. Xu ◽  
W. D. Zhu ◽  
S. A. Smith

While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numerical cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.


Sign in / Sign up

Export Citation Format

Share Document