Analysis of scattering by finite sonic crystals in free field with infinite elements and normal modes

2020 ◽  
Vol 476 ◽  
pp. 115291 ◽  
Author(s):  
Lennart Moheit ◽  
Spyridon Anthis ◽  
Johannes Heinz ◽  
Felix Kronowetter ◽  
Steffen Marburg
Author(s):  
V. Romero-Garci´a ◽  
E. Fuster-Garcia ◽  
L. M. Garci´a-Raffi ◽  
J. V. Sa´nchez-Pe´rez

Environmental noise problems become an standard topic across the years. Acoustic barriers have been purposed as a possible solution because they can act creating an acoustic attenuation zone which depends on the sound frequency, reducing the sound transmission through it. It was demonstrated that at high sound frequencies the effect of the barriers is more pronounced than at low frequencies, due to the diffraction in their edges. Sonic Crystals (SCs) are periodic arrays of scatterers embedded in a host material with strong modulation of its physical properties, that produces band gaps attenuation in frequencies related with their geometry. These frequencies are explained by the well known Bragg’s diffraction inside the crystal. SCs present different high symmetry directions, where the Bragg’s peaks appears in different frequencies ranges due to the variation of the geometry in each direction. Recently, some authors have studied the possibility to use SCs to reduce noise in free-field condition. Also, it was showed that SCs built by trees are acoustic systems that present acoustic band gaps in low frequency range due to the geometric distribution of the trees. These results led us think that these structures are a suitable device to reduce noise, this means SCs could be use as acoustic barriers. Nevertheless the technological application of these devices for controlling the noise present some problems. First, the angular dependence of the frequencies attenuated when the sound impinges over the SC. Second, the fact that the necessary space to put the SC is bigger than in the case of the traditional acoustic barriers. Finally, the necessity of some robust and long-lasting materials to use them outdoors. In this paper we show the possibility to use different materials (rigid, mixed or soft) to make scatterers, explaining their advantages or disadvantages. These materials in conjunction with some optimization methods will allow us find some solutions to the problems mentioned above. We will relate both acoustic systems, acoustic barriers and SCs, making a comparison of the main properties of each one and then, we will present the technological possibilities to design acoustic barriers based on SCs.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850029 ◽  
Author(s):  
Lennart Moheit ◽  
Steffen Marburg

The Helmholtz equation for exterior acoustic problems can be solved by the finite element method in combination with conjugated infinite elements. Both provide frequency-independent system matrices, forming a discrete, linear system of equations. The homogenous system can be understood as a quadratic eigenvalue problem of normal modes (NMs). Knowledge about the only relevant NMs, which — when doing modal superposition — still provide a sufficiently accurate solution for the sound pressure and sound power in comparison to the full set of modes, leads to reduced computational effort. Properties of NMs and criteria of modal reduction are discussed in this work.


1989 ◽  
Vol 79 (5) ◽  
pp. 1347-1360
Author(s):  
Abdolrasool Anooshehpoor ◽  
James N. Brune

Abstract A study of the topographic and dam interaction effects was made using a 3-D foam rubber model of the actual topography around the Pacoima Dam accelerograph which recorded over 1 g high-frequency horizontal ground accelerations during the 1971 San Fernando earthquake. Scaling of frequency from the model to the earth depends on the average value of shear-wave velocity in the upper few hundred meters. Assuming βe = 2 km/sec, for vertically incident SH waves, the spectral ratio of the ground acceleration on the ridge to the free field (flat surface) indicates an amplification of about 60 per cent around 6.5 Hz on the N76°W component. Topography has little effect upon the motion recorded on the S14°W component. Motion on the ridge is lower than the free-field motion on both horizontal components for frequencies above 9 Hz. Amplification peaks shift to higher or lower frequencies depending on the assumed shear-wave velocity in the upper few hundred meters. Results from nonvertically incident SH waves show that the topographic effect is dependent on the direction of approach of the seismic energy. The effect is either de-amplification (in part by shadowing) or amplification (relative to the case where no topography is present), depending on whether the canyon is on the ray path or not. The Fourier spectrum of the ground motion at the dam crest shows peak frequencies at about 5 Hz and 10 Hz (resonance), which correspond to the normal modes of the dam. A study of dynamic interaction between the Pacoima Dam and the ridge shows that the coupling is less than 2 per cent at about 10 Hz and less than 12 percent at about 5 Hz.


2017 ◽  
Vol 25 (04) ◽  
pp. 1650020 ◽  
Author(s):  
Lennart Moheit ◽  
Steffen Marburg

Acoustic radiation modes (ARMs) and normal modes (NMs) are calculated at the surface of a fluid-filled domain around a solid structure and inside the domain, respectively. In order to compute the exterior acoustic problem and modes, both the finite element method (FEM) and the infinite element method (IFEM) are applied. More accurate results can be obtained by using finer meshes in the FEM or higher-order radial interpolation polynomials in the IFEM, which causes additional degrees of freedom (DOF). As such, more computational cost is required. For this reason, knowledge about convergence behavior of the modes for different mesh cases is desirable, and is the aim of this paper. It is shown that the acoustic impedance matrix for the calculation of the radiation modes can be also constructed from the system matrices of finite and infinite elements instead of boundary element matrices, as is usually done. Grouping behavior of the eigenvalues of the radiation modes can be observed. Finally, both kinds of modes in exterior acoustics are compared in the example of the cross-section of a recorder in air. When the number of DOF is increased by using higher-order radial interpolation polynomials, different eigenvalue convergences can be observed for interpolation polynomials of even and odd order.


2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


1988 ◽  
Vol 31 (2) ◽  
pp. 156-165 ◽  
Author(s):  
P. A. Busby ◽  
Y. C. Tong ◽  
G. M. Clark

The identification of consonants in a/-C-/a/nonsense syllables, using a fourteen-alternative forced-choice procedure, was examined in 4 profoundly hearing-impaired children under five conditions: audition alone using hearing aids in free-field (A),vision alone (V), auditory-visual using hearing aids in free-field (AV1), auditory-visual with linear amplification (AV2), and auditory-visual with syllabic compression (AV3). In the AV2 and AV3 conditions, acoustic signals were binaurally presented by magnetic or acoustic coupling to the subjects' hearing aids. The syllabic compressor had a compression ratio of 10:1, and attack and release times were 1.2 ms and 60 ms. The confusion matrices were subjected to two analysis methods: hierarchical clustering and information transmission analysis using articulatory features. The same general conclusions were drawn on the basis of results obtained from either analysis method. The results indicated better performance in the V condition than in the A condition. In the three AV conditions, the subjects predominately combined the acoustic parameter of voicing with the visual signal. No consistent differences were recorded across the three AV conditions. Syllabic compression did not, therefore, appear to have a significant influence on AV perception for these children. A high degree of subject variability was recorded for the A and three AV conditions, but not for the V condition.


2002 ◽  
Vol 16 (2) ◽  
pp. 114-118 ◽  
Author(s):  
Timo Ruusuvirta ◽  
Heikki Hämäläinen

Abstract Human event-related potentials (ERPs) to a tone continuously alternating between its two spatial loci of origin (middle-standards, left-standards), to repetitions of left-standards (oddball-deviants), and to the tones originally representing these repetitions presented alone (alone-deviants) were recorded in free-field conditions. During the recordings (Fz, Cz, Pz, M1, and M2 referenced to nose), the subjects watched a silent movie. Oddball-deviants elicited a spatially diffuse two-peaked deflection of positive polarity. It differed from a deflection elicited by left-standards and commenced earlier than a prominent deflection of negative polarity (N1) elicited by alone-deviants. The results are discussed in the context of the mismatch negativity (MMN) and previous findings of dissociation between spatial and non-spatial information in auditory working memory.


1999 ◽  
Author(s):  
W. Todd Nelson ◽  
Robert S. Bolia ◽  
Mark A. Ericson ◽  
Richard L. McKinley

Sign in / Sign up

Export Citation Format

Share Document