Volume 1: 21st Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C
Latest Publications


TOTAL DOCUMENTS

255
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

0791848027

Author(s):  
Lee Wells ◽  
Yirong Lin ◽  
Henry Sodano ◽  
Byeng Youn

The continual advances in wireless technology and low power electronics have allowed the deployment of small remote sensor networks. However, current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. Furthermore, the growth of battery technology has remained relatively stagnant over the past decade while the performance of computing systems has grown steadily, which leads to increased power usage from the electronics. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. For this reason the primary question becomes how to provide power to each node. This issue has spawned the rapid growth of the energy harvesting field. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. However, when designing a vibration based energy harvesting system the maximum energy generation occurs when the resonant frequency of the system is tuned to the input. This poses certain issues for their practical application because structural systems rarely vibrate at a signal frequency. Therefore, this effort will investigate the optimal geometric design of two dimensional energy harvesting systems for maximized bandwidth. Topology and shape optimization will be used to identify the optimal geometry and experiments will be performed to characterize the energy harvesting improvement when subjected to random vibrations.


Author(s):  
Rau´l M. del Toro ◽  
Michael C. Schmittdiel ◽  
Rodolfo E. Haber-Guerra ◽  
Rodolfo Haber-Haber

A simple, fast, network-based experimental procedure for identifying the dynamics of the high-performance drilling (HPD) process is proposed and successfully applied. This identification technique utilizes a single-input (feed rate), single-output (resultant force) system with a dual step input function. The model contains the delays of both the network architecture (a PROFIBUS type network) and the dead time related with the plant dynamic itself. Classical identification techniques are used to obtain first order, second order, and third order models on the basis of the recorded input/output data. The developed models relate the dynamic behavior of resultant force versus commanded feed rate in HPD. Model validation is performed through error-based performance indices and correlation analyses. Experimental verification is performed using two different work piece materials. The models match perfectly with real-time force behavior in drilling operations and are easily integrated with many control strategies. Furthermore, these results demonstrate that the HPD process is somewhat non-linear with a remarkable difference in gain due to work piece material; however, the dynamic behavior does not change significantly.


Author(s):  
L. J. Jiang ◽  
K. W. Wang ◽  
J. Tang

Model updating plays an important role in structural design and dynamic analysis. The process of model updating aims to produce an improved mathematical model by correlating the initial model with the experimentally measured data. There are a variety of techniques available for model updating using dynamic and static measurements of the structure’s behavior. This paper focuses on the model updating methods using the measured natural frequencies of the structure. The practice of model updating using only the natural frequencies encounters two well-known limitations: deficiency of frequency measurement data, and low sensitivity of measured natural frequencies with respect to the physical parameters that need to be updated. To overcome these limitations, a novel model updating method is presented in this paper. First, closed-loop control is applied to the structure to enhance the sensitivity of natural frequencies to the updating parameters. Second, by including the natural frequencies based on a series of sensitivity-enhanced closed-loop systems, we can significantly enrich the frequency measurement data available for model updating. Using the natural frequencies of these sensitivity-enhanced closed-loop systems, an iterative process is utilized to update the physical parameters in the initial model. To demonstrate and verify the proposed method, case studies are carried out using a cantilevered beam structure. The natural frequencies of a series of sensitivity-enhanced closed-loop systems are utilized to update the mass and stiffness parameters in the initial FE model. Results show that the modeling errors in the mass and stiffness parameters can be accurately identified by using the proposed model updating method.


Author(s):  
Samuel F. Asokanthan ◽  
Ye Tian ◽  
Tianfu Wang

The present paper is concerned with the use of active roll control to improve the roll stability of heavy road-vehicles and the application of Micro-electro-mechanical System (MEMS) angular rate sensors in the feedback monitoring. For this purpose, mathematical models that represent the roll/yaw dynamics for a torsionally rigid Single Unit Vehicle (SUV) is presented. The state-space models that represent the vehicle dynamics are also developed for the purpose of performing numerical simulations. A linear Quadratic Gaussian (LQG) based controller, using Kalman estimator to estimate certain states, is employed to design a full-state active roll control system. A mathematical model that represents the dynamic behavior of a low-cost MEMS gyroscope is derived for the purpose of investigating the suitability of applying this class of angular rate sensor in the roll control of heavy vehicles. Some reliability issues related to MEMS sensors, such as noise and drift, are introduced and included in vehicle dynamic models.


Author(s):  
Thomas Pumho¨ssel ◽  
Horst Ecker

In several fields, e.g. aerospace applications, robotics or the bladings of turbomachinery, the active damping of vibrations of slender beams which are subject to free bending vibrations becomes more and more important. In this contribution a slender cantilever beam loaded with a controlled force at its tip, which always points to the clamping point of the beam, is treated. The equations of motion are obtained using the Bernoulli-Euler beam theory and d’Alemberts principle. To introduce artificial damping to the lateral vibrations of the beam, the force at the tip of the beam has to be controlled in a proper way. Two different methods are compared. One concept is the closed-loop control of the force. In this case a nonlinear feedback control law is used, based on axial velocity feedback of the tip of the beam and a state-dependent amplification. By contrast, the concept of open-loop parametric control works without any feedback of the actual vibrations of the mechanical structure. This approach applies the force as harmonic function of time with constant amplitude and frequency. Numerical results are carried out to compare and to demonstrate the effectiveness of both methods.


Author(s):  
Kazuto Seto ◽  
Chinori Iio ◽  
Shigeru Inaba ◽  
Shingo Mitani ◽  
Fadi Dohnal ◽  
...  

This paper presents a vibration control method for multiple high-rise buildings against large earthquake motion. This method is called as “Connected Control Method (CCM)” and has the merit of obtaining enough control force to protect high-rise buildings from large earthquakes using passive and semiactive devices. In this paper, first a modeling approach for four scaled building structures is shown and effectiveness of the CCM using LQ control approach for them is demonstrated by seismic response control results. Next, in order to reduce the supplied power, a semi-active control approach in place of active control is applied for the CCM. For this purpose, a new MR damper is developed and designed to have a close performance with results of the LQ control. This performance is verified by measured frequency responses.


Author(s):  
Danuta Sado

The nonlinear dynamics of a three degree of freedom autoparametrical vibration system with two coupled pendulums in the neighborhood internal and external resonances is presented in this work. It was assumed that the main body is suspended by an element characterized by non-linear elasticity and non-linear damping force and is excited harmonicaly in the vertical direction. The two connected by spring pendulums characterized are mounted to the main body. It is assumed, that the motion of the pendulums are damped by nonlinear resistive forces. Solutions for the system response are presented for specific values of the uncoupled normal frequency ratios and the energy transfer between modes of vibrations is observed. Curves of internal resonances for free vibrations and external resonances for exciting force are shown. In this type system one mode of vibration may excite or damp another one, and except different kinds of periodic vibration there may also appear chaotic vibration. Various techniques, including chaos techniques such as bifurcation diagrams and: time histories, phase plane portraits, power spectral densities, Poincare` maps and exponents of Lyapunov, are used in the identification of the responses. These bifurcation diagrams show many sudden qualitative changes, that is, many bifurcations in the chaotic attractor as well as in the periodic orbits. The results show that the system can exhibit various types of motion, from periodic to quasi-periodic to chaotic, and is sensitive to small changes of the system parameters.


Author(s):  
Mohamed B. Trabia ◽  
Woosoon Yim ◽  
Paul Weinacht ◽  
Venkat Mudupu

The objective of this paper is to explore a method for the design of fuzzy logic controller for a smart fin used to control the pitch and yaw attitudes of a subsonic projectile during flight. Piezoelectric actuators are an attractive alternative to hydraulic actuators commonly used in this application due to their simplicity. The proposed cantilever-shaped actuator can be fully enclosed within the hollow fin with one end fixed to the rotation axle of the fin while the other end is pinned at the trailing edge of the fin. The paper includes a dynamic model of the system based on the finite element approach. The model includes external moment due to aerodynamic effects. This paper presents a novel approach for automatically creating fuzzy logic controllers for the fin. This approach uses the inverse dynamics of the smart fin system to determine the ranges of the variables of the controllers. Simulation results show that the proposed controller can successfully drive smart fin under various operating conditions.


Author(s):  
Andra´s Simon ◽  
George Flowers

Advanced rotor systems, for such applications as high-speed flywheel systems, consist (in a basic fashion) of a lightweight rotor spinning at relatively high speeds and supported by magnetic bearings. Composite materials are an extremely attractive choice for such rotor designs, offering high strength with light-weight. However, there are a number of issues that must be addressed for such efforts to be successful. Specific issues include imbalance control and active techniques to suppress internal damping-induced instability. A detailed description of the problem being considered and a strategy for solving it are presented. Simulation modeling and analysis results are presented and discussed to illustrate the method and demonstrate its effectiveness.


Author(s):  
Lifu Liang ◽  
Liming Dai ◽  
Qingyong Guo

According to the corresponding relations between generalized forces and generalized displacements, the basic equations of elasto-dynamics in phase space are multiplied by corresponding virtual quantities, integrated and then added algebraically. By considering the character of fellow body and surface forces, the generalized quasi-variational principles of non-conservative systems are established in elasto-dynamics in phase space. By doing inverse Laplace transformation, the convolutional generalized quasi-variational principles of non-conservative systems of elasto-dynamics are established in original space. Applying the generalized quasi-complementary energy principle to the mechanical vibration problem of two kinds of variables, the authors of this paper present a calculation method for solving two kinds of variables simultaneously: the internal force and the displacement of a typical fellow force system.


Sign in / Sign up

Export Citation Format

Share Document