scholarly journals The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks

2010 ◽  
Vol 267 (1) ◽  
pp. 48-61 ◽  
Author(s):  
Sam F. Greenbury ◽  
Iain G. Johnston ◽  
Matthew A. Smith ◽  
Jonathan P.K. Doye ◽  
Ard A. Louis
Author(s):  
Christian Darabos ◽  
Mario Giacobini ◽  
Marco Tomassini

Random Boolean Networks (RBN) have been introduced by Kauffman more than thirty years ago as a highly simplified model of genetic regulatory networks. This extremely simple and abstract model has been studied in detail and has been shown capable of extremely interesting dynamical behavior. First of all, as some parameters are varied such as the network’s connectivity, or the probability of expressing a gene, the RBN can go through a phase transition, going from an ordered regime to a chaotic one. Kauffman’s suggestion is that cell types correspond to attractors in the RBN phase space, and only those attractors that are short and stable under perturbations will be of biological interest. Thus, according to Kauffman, RBN lying at the edge between the ordered phase and the chaotic phase can be seen as abstract models of genetic regulatory networks. The original view of Kauffman, namely that these models may be useful for understanding real-life cell regulatory networks, is still valid, provided that the model is updated to take into account present knowledge about the topology of real gene regulatory networks, and the timing of events, without loosing its attractive simplicity. According to present data, many biological networks, including genetic regulatory networks, seem, in fact, to be of the scale-free type. From the point of view of the timing of events, standard RBN update their state synchronously. This assumption is open to discussion when dealing with biologically plausible networks. In particular, for genetic regulatory networks, this is certainly not the case: genes seem to be expressed in different parts of the network at different times, according to a strict sequence, which depends on the particular network under study. The expression of a gene depends on several transcription factors, the synthesis of which appear to be neither fully synchronous nor instantaneous. Therefore, we have recently proposed a new, more biologically plausible model. It assumes a scale-free topology of the networks and we define a suitable semi-synchronous dynamics that better captures the presence of an activation sequence of genes linked to the topological properties of the network. By simulating statistical ensembles of networks, we discuss the attractors of the dynamics, showing that they are compatible with theoretical biological network models. Moreover, the model demonstrates interesting scaling abilities as the size of the networks is increased.


2018 ◽  
Author(s):  
Adrian I. Campos-González ◽  
Julio A. Freyre-González

Genetic regulatory networks (GRNs) have been widely studied, yet there is a lack of understanding with regards to the final size and properties of these networks, mainly due to no network is currently complete. In this study, we analyzed the distribution of GRN structural properties across a large set of distinct prokaryotic organisms and found a set of constrained characteristics such as network density and number of regulators. Our results allowed us to estimate the number of interactions that complete networks would have, a valuable insight that could aid in the daunting task of network curation, prediction, and validation. Using state-of-the-art statistical approaches, we also provided new evidence to settle a previously stated controversy that raised the possibility of complete biological networks being random. Therefore, attributing the observed scale-free properties to an artifact emerging from the sampling process during network discovery. Furthermore, we identified a set of properties that enabled us to assess the consistency of the connectivity distribution for various GRNs against different alternative statistical distributions. Our results favor the hypothesis that highly connected nodes (hubs) are not a consequence of network incompleteness. Finally, an interaction coverage computed for the GRNs as a proxy for completeness revealed that high-throughput based reconstructions of GRNs could yield biased networks with a low average clustering coefficient, showing that classical targeted discovery of interactions is still needed.


2008 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Guanrao Chen ◽  
Peter Larsen ◽  
Eyad Almasri ◽  
Yang Dai

2019 ◽  
Vol 356 (5) ◽  
pp. 2847-2869 ◽  
Author(s):  
Dandan Yue ◽  
Zhi-Hong Guan ◽  
Juan Li ◽  
Feng Liu ◽  
Jiang-Wen Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document