scholarly journals Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia

2016 ◽  
Vol 401 ◽  
pp. 43-53 ◽  
Author(s):  
Helena L. Crowell ◽  
Adam L. MacLean ◽  
Michael P.H. Stumpf
2018 ◽  
Author(s):  
Jesse A Sharp ◽  
Alexander P Browning ◽  
Tarunendu Mapder ◽  
Kevin Burrage ◽  
Matthew J Simpson

AbstractAcute myeloid leukaemia (AML) is a blood cancer affecting haematopoietic stem cells. AML is routinely treated with chemotherapy, and so it is of great interest to develop optimal chemotherapy treatment strategies. In this work, we incorporate an immune response into a stem cell model of AML, since we find that previous models lacking an immune response are inappropriate for deriving optimal control strategies. Using optimal control theory, we produce continuous controls and bang-bang controls, corresponding to a range of objectives and parameter choices. Through example calculations, we provide a practical approach to applying optimal control using Pontryagin’s Maximum Principle. In particular, we describe and explore factors that have a profound influence on numerical convergence. We find that the convergence behaviour is sensitive to the method of control updating, the nature of the control, and to the relative weighting of terms in the objective function. All codes we use to implement optimal control are made available.


Author(s):  
Henrik Hasle ◽  
Charlotte M. Niemeyer

Myeloid malignancies in children are divided into acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS), juvenile myelomonocytic leukaemia (JMML), and the myeloid leukaemia of Down syndrome (ML-DS). Predisposing genetic conditions are common in MDS. Differentiating MDS from inherited bone marrow failure or AML may be challenging. Therapy consists of observation, immunosuppression, or stem-cell transplantation (SCT). Germline and somatic mutations deregulating the Ras/MAPK signal pathways are key initiating events in JMML. Genetics in JMML defines clinically relevant subgroups and indications for SCT. ML-DS presents with unique clinical characteristics and responds favourably to reduced doses of AML chemotherapy; however, relapse is often refractory to therapy.


2020 ◽  
Vol 190 (6) ◽  
pp. 891-900 ◽  
Author(s):  
Diana Hanekamp ◽  
Alexander N. Snel ◽  
Angèle Kelder ◽  
Willemijn J. Scholten ◽  
Naeem Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document