Deep learning for predictions of hydrolysis rates and conditional molecular design of esters

Author(s):  
Po-Hao Chiu ◽  
Yan-Lin Yang ◽  
Heng-Kwong Tsao ◽  
Yu-Jane Sheng
2019 ◽  
Vol 4 (4) ◽  
pp. 828-849 ◽  
Author(s):  
Daniel C. Elton ◽  
Zois Boukouvalas ◽  
Mark D. Fuge ◽  
Peter W. Chung

We review a recent groundswell of work which uses deep learning techniques to generate and optimize molecules.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Johannes Linder ◽  
Georg Seelig

Abstract Background Optimization of DNA and protein sequences based on Machine Learning models is becoming a powerful tool for molecular design. Activation maximization offers a simple design strategy for differentiable models: one-hot coded sequences are first approximated by a continuous representation, which is then iteratively optimized with respect to the predictor oracle by gradient ascent. While elegant, the current version of the method suffers from vanishing gradients and may cause predictor pathologies leading to poor convergence. Results Here, we introduce Fast SeqProp, an improved activation maximization method that combines straight-through approximation with normalization across the parameters of the input sequence distribution. Fast SeqProp overcomes bottlenecks in earlier methods arising from input parameters becoming skewed during optimization. Compared to prior methods, Fast SeqProp results in up to 100-fold faster convergence while also finding improved fitness optima for many applications. We demonstrate Fast SeqProp’s capabilities by designing DNA and protein sequences for six deep learning predictors, including a protein structure predictor. Conclusions Fast SeqProp offers a reliable and efficient method for general-purpose sequence optimization through a differentiable fitness predictor. As demonstrated on a variety of deep learning models, the method is widely applicable, and can incorporate various regularization techniques to maintain confidence in the sequence designs. As a design tool, Fast SeqProp may aid in the development of novel molecules, drug therapies and vaccines.


Author(s):  
Oleksii Prykhodko ◽  
Simon Viet Johansson ◽  
Panagiotis-Christos Kotsias ◽  
Josep Arús-Pous ◽  
Esben Jannik Bjerrum ◽  
...  

<p> </p><p>Deep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two scenarios: one to generate random drug-like compounds and another to generate target-biased compounds. Our results show that the method works well in both cases: sampled compounds from the trained model can largely occupy the same chemical space as the training set and also generate a substantial fraction of novel compounds. Moreover, the drug-likeness score of compounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from those obtained with a Recurrent Neural Network-based generative model approach, indicating that both methods can be used complementarily.</p><p> </p>


JACS Au ◽  
2021 ◽  
Author(s):  
Joonyoung F. Joung ◽  
Minhi Han ◽  
Jinhyo Hwang ◽  
Minseok Jeong ◽  
Dong Hoon Choi ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Oleksii Prykhodko ◽  
Simon Viet Johansson ◽  
Panagiotis-Christos Kotsias ◽  
Josep Arús-Pous ◽  
Esben Jannik Bjerrum ◽  
...  

AbstractDeep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two scenarios: one to generate random drug-like compounds and another to generate target-biased compounds. Our results show that the method works well in both cases. Sampled compounds from the trained model can largely occupy the same chemical space as the training set and also generate a substantial fraction of novel compounds. Moreover, the drug-likeness score of compounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from those obtained with a Recurrent Neural Network-based generative model approach, indicating that both methods can be used complementarily.


2021 ◽  
Author(s):  
Jie Zhang ◽  
Rocío Mercado ◽  
Ola Engkvist ◽  
Hongming Chen

<p>In recent years, deep molecular generative models have emerged as novel methods for <i>de novo</i> molecular design. Thanks to the rapid advance of deep learning techniques, deep learning architectures such as recurrent neural networks, generative autoencoders, and adversarial networks, to give a few examples, have been employed for constructing generative models. However, so far the metrics used to evaluate these deep generative models are not discriminative enough to separate the performance of various state-of-the-art generative models. This work presents a novel metric for evaluating deep molecular generative models; this new metric is based on the chemical space coverage of a reference database, and compares not only the molecular structures, but also the ring systems and functional groups, reproduced from a reference dataset of 1M structures. In this study, the performance of 7 different molecular generative models was compared by calculating their structure and substructure coverage of the GDB-13 database while using a 1M subset of GDB-13 for training. Our study shows that the performance of various generative models varies significantly using the benchmarking metrics introduced herein, such that generalization capability of the generative model can be clearly differentiated. Additionally, the coverage of ring systems and functional groups existing in GDB-13 was also compared between the models. Our study provides a useful new metric that can be used for evaluating and comparing generative models.</p>


2019 ◽  
Author(s):  
Oleksii Prykhodko ◽  
Simon Viet Johansson ◽  
Panagiotis-Christos Kotsias ◽  
Josep Arús-Pous ◽  
Esben Jannik Bjerrum ◽  
...  

<p> </p><p>Deep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two scenarios: one to generate random drug-like compounds and another to generate target-biased compounds. Our results show that the method works well in both cases: sampled compounds from the trained model can largely occupy the same chemical space as the training set and also generate a substantial fraction of novel compounds. Moreover, the drug-likeness score of compounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from those obtained with a Recurrent Neural Network-based generative model approach, indicating that both methods can be used complementarily.</p><p> </p>


2021 ◽  
Author(s):  
Quentin Perron ◽  
Olivier Mirguet ◽  
Hamza Tajmouati ◽  
Adam Skiredj ◽  
Anne Rojas ◽  
...  

<div> <div> <div> <p>Multi-Parameter Optimization (MPO) is a major challenge in New Chemical Entity (NCE) drug discovery projects, and the inability to identify molecules meeting all the criteria of lead optimization (LO) is an important cause of NCE project failure. Several ligand- and structure-based de novo design methods have been published over the past decades, some of which have proved useful multiobjective optimization. However, there is still need for improvement to better address the chemical feasibility of generated compounds as well as increasing the explored chemical space while tackling the MPO challenge. Recently, promising results have been reported for deep learning generative models applied to de novo molecular design, but until now, to our knowledge, no report has been made of the value of this new technology for addressing MPO in an actual drug discovery project. Our objective in this study was to evaluate the potential of a ligand-based de novo design technology using deep learning generative models to accelerate the discovery of an optimized lead compound meeting all in vitro late stage LO criteria. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document