molecular sequence
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 89)

H-INDEX

38
(FIVE YEARS 6)

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1606
Author(s):  
Sarah Shabayek ◽  
Patricia Ferrieri ◽  
Barbara Spellerberg

Streptococcus agalactiae or group B streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts of healthy women and an important cause of neonatal invasive infections worldwide. Transmission of bacteria to the newborn occurs at birth and can be prevented by intrapartum antibiotic prophylaxis. However, this not available in resource limited settings in Africa, which carries a particular high burden of disease. Serotype based vaccines are in development and present a suitable alternative to prevent neonatal infections. To be able to assess vaccine efficacy, knowledge and surveillance of GBS epidemiological data are required. This review summarizes investigations about the serotype distribution and the multi-locus sequence types (MLST) found in different African countries. While most serotypes and MLST data are comparable to findings from other continents, some specific differences exist. Serotype V is predominant among colonizing maternal strains in many different African countries. Serotypes that are rarely detected in western industrialized nations, such as serotypes VI, VII and IX, are prevalent in studies from Ghana and Egypt. Moreover, some specific MLST sequence types that seem to be more or less unique to Africa have been detected. However, overall, the data confirm that a hexavalent vaccine can provide broad coverage for the African continent and that a protein vaccine could represent a promising alternative.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1238
Author(s):  
Robert M. Waterhouse ◽  
Anne-Françoise Adam-Blondon ◽  
Donat Agosti ◽  
Petr Baldrian ◽  
Bachir Balech ◽  
...  

Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth’s biodiversity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260428
Author(s):  
Maurizio Righini ◽  
Justin Costa ◽  
Wei Zhou

DNA molecular combing is a technique that stretches thousands of long individual DNA molecules (up to 10 Mbp) into a parallel configuration on surface. It has previously been proposed to sequence these molecules by synthesis. However, this approach poses two critical challenges: 1-Combed DNA molecules are overstretched and therefore a nonoptimal substrate for polymerase extension. 2-The combing surface sterically impedes full enzymatic access to the DNA backbone. Here, we introduce a novel approach that attaches thousands of molecules to a removable surface, with a tunable stretching factor. Next, we dissolve portions of the surface, leaving the DNA molecules suspended as ‘bridges’. We demonstrate that the suspended molecules are enzymatically accessible, and we have used an enzyme to incorporate labeled nucleotides, as predicted by the specific molecular sequence. Our results suggest that this novel platform is a promising candidate to achieve high-throughput sequencing of Mbp-long molecules, which could have additional genomic applications, such as the study of other protein-DNA interactions.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 568
Author(s):  
Prashant P. Sharma ◽  
Jesús A. Ballesteros ◽  
Carlos E. Santibáñez-López

The basal phylogeny of Chelicerata is one of the opaquest parts of the animal Tree of Life, defying resolution despite application of thousands of loci and millions of sites. At the forefront of the debate over chelicerate relationships is the monophyly of Arachnida, which has been refuted by most analyses of molecular sequence data. A number of phylogenomic datasets have suggested that Xiphosura (horseshoe crabs) are derived arachnids, refuting the traditional understanding of arachnid monophyly. This result is regarded as controversial, not least by paleontologists and morphologists, due to the widespread perception that arachnid monophyly is unambiguously supported by morphological data. Moreover, some molecular datasets have been able to recover arachnid monophyly, galvanizing the belief that any result that challenges arachnid monophyly is artefactual. Here, we explore the problems of distinguishing phylogenetic signal from noise through a series of in silico experiments, focusing on datasets that have recently supported arachnid monophyly. We assess the claim that filtering by saturation rate is a valid criterion for recovering Arachnida. We demonstrate that neither saturation rate, nor the ability to assemble a molecular phylogenetic dataset supporting a given outcome with maximal nodal support, is a guarantor of phylogenetic accuracy. Separately, we review empirical morphological phylogenetic datasets to examine characters supporting Arachnida and the downstream implication of a single colonization of terrestrial habitats. We show that morphological support of arachnid monophyly is contingent upon a small number of ambiguous or incorrectly coded characters, most of these tautologically linked to adaptation to terrestrial habitats.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Johannes Linder ◽  
Georg Seelig

Abstract Background Optimization of DNA and protein sequences based on Machine Learning models is becoming a powerful tool for molecular design. Activation maximization offers a simple design strategy for differentiable models: one-hot coded sequences are first approximated by a continuous representation, which is then iteratively optimized with respect to the predictor oracle by gradient ascent. While elegant, the current version of the method suffers from vanishing gradients and may cause predictor pathologies leading to poor convergence. Results Here, we introduce Fast SeqProp, an improved activation maximization method that combines straight-through approximation with normalization across the parameters of the input sequence distribution. Fast SeqProp overcomes bottlenecks in earlier methods arising from input parameters becoming skewed during optimization. Compared to prior methods, Fast SeqProp results in up to 100-fold faster convergence while also finding improved fitness optima for many applications. We demonstrate Fast SeqProp’s capabilities by designing DNA and protein sequences for six deep learning predictors, including a protein structure predictor. Conclusions Fast SeqProp offers a reliable and efficient method for general-purpose sequence optimization through a differentiable fitness predictor. As demonstrated on a variety of deep learning models, the method is widely applicable, and can incorporate various regularization techniques to maintain confidence in the sequence designs. As a design tool, Fast SeqProp may aid in the development of novel molecules, drug therapies and vaccines.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu-He Zhao ◽  
Tong Zhou ◽  
Jiu-Xia Wang ◽  
Yan Li ◽  
Min-Feng Fang ◽  
...  

Abstract Background Chloroplast transfer RNAs (tRNAs) can participate in various vital processes. Gymnosperms have important ecological and economic value, and they are the dominant species in forest ecosystems in the Northern Hemisphere. However, the evolution and structural changes in chloroplast tRNAs in gymnosperms remain largely unclear. Results In this study, we determined the nucleotide evolution, phylogenetic relationships, and structural variations in 1779 chloroplast tRNAs in gymnosperms. The numbers and types of tRNA genes present in the chloroplast genomes of different gymnosperms did not differ greatly, where the average number of tRNAs was 33 and the frequencies of occurrence for various types of tRNAs were generally consistent. Nearly half of the anticodons were absent. Molecular sequence variation analysis identified the conserved secondary structures of tRNAs. About a quarter of the tRNA genes were found to contain precoded 3′ CCA tails. A few tRNAs have undergone novel structural changes that are closely related to their minimum free energy, and these structural changes affect the stability of the tRNAs. Phylogenetic analysis showed that tRNAs have evolved from multiple common ancestors. The transition rate was higher than the transversion rate in gymnosperm chloroplast tRNAs. More loss events than duplication events have occurred in gymnosperm chloroplast tRNAs during their evolutionary process. Conclusions These findings provide novel insights into the molecular evolution and biological characteristics of chloroplast tRNAs in gymnosperms.


2021 ◽  
Vol 773 ◽  
Author(s):  
Paul D. Taylor ◽  
Jean-Georges Harmelin ◽  
Andrea Waeschenbach ◽  
Claude Bouchon

The taxonomy of cyclostome bryozoans is founded on characters of the skeleton, but molecular sequence data have increasingly shown that established higher taxa are not monophyletic. Here we describe the skeletal morphology of a new species from Guadeloupe (French West Indies) with erect ramose colonies consisting of long, curved zooids that are typical of the suborder Cerioporina among living cyclostomes. However, molecular evidence from nuclear ribosomal RNA genes 18S and 28S places the new taxon in the suborder Rectangulata, where this colony-form has not been previously recorded. It nests firmly within the genus Disporella Gray, 1848, in a strongly supported clade that also includes Plagioecia patina (Lamarck, 1816) (Tubuliporina) and the sister taxa Doliocoitis cyanea Gordon & Taylor, 2001 (Rectangulata) and Favosipora rosea Gordon & Taylor, 2001 (Cerioporina). The short and robust branches of the new Guadeloupe cyclostome, here named Disporella guada Harmelin, Taylor & Waeschenbach sp. nov., are well adapted to life in shallow rocky sites exposed to severe wave action, which appear to be its exclusive habitat.


2021 ◽  
Vol 9 ◽  
Author(s):  
Robert Young ◽  
Rekkab Gill ◽  
Daniel Gillis ◽  
Robert Hanner

Molecular sequence data is an essential component for many biological fields of study. The strength of these data is in their ability to be centralised and compared across research studies. There are many online repositories for molecular sequence data, some of which are very large accumulations of varying data types like NCBI’s GenBank. Due to the size and the complexity of the data in these repositories, challenges arise in searching for data of interest. While data repositories exist for molecular markers, taxa and other specific research interests, repositories may not contain, or be suitable for, more specific applications. Manually accessing, searching, downloading, accumulating, dereplicating and cleaning data to construct project-specific datasets is time-consuming. In addition, the manual assembly of datasets presents challenges with reproducibility. Here, we present the MACER package to assist researchers in assembling molecular datasets and provide reproducibility in the process.


Zootaxa ◽  
2021 ◽  
Vol 5027 (3) ◽  
pp. 332-350
Author(s):  
TAPAS CHATTERJEE ◽  
M. ANTONIO TODARO

India has a long history of research on freshwater and marine Gastrotricha. In more than 110 years of study on Order Chaetonotida, two families consisting of 11 genera and 39 species have been described. Thirty of these species are taxa originally described from other continents, while only nine species (7 freshwater, 2 marine) are only known from India. The large percentage (77%) of so-called cosmopolitan species in India has contributed to the phenomenon known as the “meiofauna paradox”. However, a careful review of the pertaining literature provides a different biogeographical picture of the chaetonotidan fauna of India. Herein we show that the high incidence of European and North American species reported from India is mainly due to a mixture of misidentification and species lumping. In fact, for only 12 species there are enough data that would make the Indian specimens morphological similar to taxa previously reported from Europe and/or North America. However, without the appropriate molecular sequence data for comparison, there is no way to rule out the possibility of cryptic speciation.We conclude that further sampling throughout India and the use of more powerful microscopical techniques (e.g., DIC optics) and molecular sequencing will reveal more species and improve the quality of re-descriptions of those (9 spp.) that so far appear to be endemic to the subcontinent. Here we recommend six species to be excluded from the fauna of India while another 11 species (non endemic to India) should be considered dubitatively present in the Indian fauna.  


Phytotaxa ◽  
2021 ◽  
Vol 514 (3) ◽  
pp. 247-260
Author(s):  
KASUN THAMBUGALA ◽  
DINUSHANI DARANAGAMA ◽  
SAGARIKA KANNANGARA ◽  
THENUKA KODITUWAKKU

Endophytic fungi are a diverse group of microorganisms that live asymptomatically in healthy tissues of host and they have been reported from all kinds of plant tissues such as leaves, stems, roots, flowers, and fruits. In this study, fungal endophytes associated with tea leaves (Camellia sinensis) were collected from Kandy, Kegalle, and Nuwara Eliya districts in Sri Lanka and were isolated, characterized, and identified. A total of twenty endophytic fungal isolates belonging to five genera were recovered and ITS-rDNA sequence data were used to identify them. All isolated endophytic fungal strains belong to the phylum Ascomycota and the majority of these isolates were identified as Colletotrichum species. Phyllosticta capitalensis was the most commonly found fungal endophyte in tea leaves and was recorded in all three districts where the samples were collected. This is the very first investigation on fungal endophytes associated with C. sinensis in Sri Lanka based on molecular sequence data. In addition, a comprehensive account of known endophytic fungi reported worldwide on Camellia sinensis is provided.


Sign in / Sign up

Export Citation Format

Share Document