Benchmarking deep learning techniques for face recognition

Author(s):  
Qiangchang Wang ◽  
Guodong Guo

Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Author(s):  
Nitin .

Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. In human interactions, the face is the most important factor as it contains important information about a person or individual. All humans have the ability to recognise individuals from their faces. Now following system is based on face recognition to maintain the attendance record of students. The daily attendance of students is recorded subject wise which is stored already by the administrator. As the time for corresponding subject arrives the system automatically starts taking snaps and then apply face detection and recognition technique to the given image and the recognize students are marked as present and their attendance update with corresponding time and subject id. We have used deep learning techniques to develop this system, histogram of oriented gradient method is used to detect faces in images and deep learning method is used to compute and compare facial feature of students to recognize them.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2666
Author(s):  
Ahmad Alzu’bi ◽  
Firas Albalas ◽  
Tawfik AL-Hadhrami ◽  
Lojin Bani Bani Younis ◽  
Amjad Bashayreh

A large number of intelligent models for masked face recognition (MFR) has been recently presented and applied in various fields, such as masked face tracking for people safety or secure authentication. Exceptional hazards such as pandemics and frauds have noticeably accelerated the abundance of relevant algorithm creation and sharing, which has introduced new challenges. Therefore, recognizing and authenticating people wearing masks will be a long-established research area, and more efficient methods are needed for real-time MFR. Machine learning has made progress in MFR and has significantly facilitated the intelligent process of detecting and authenticating persons with occluded faces. This survey organizes and reviews the recent works developed for MFR based on deep learning techniques, providing insights and thorough discussion on the development pipeline of MFR systems. State-of-the-art techniques are introduced according to the characteristics of deep network architectures and deep feature extraction strategies. The common benchmarking datasets and evaluation metrics used in the field of MFR are also discussed. Many challenges and promising research directions are highlighted. This comprehensive study considers a wide variety of recent approaches and achievements, aiming to shape a global view of the field of MFR.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Md. Tahmid Hasan Fuad ◽  
Awal Ahmed Fime ◽  
Delowar Sikder ◽  
Md. Akil Raihan Iftee ◽  
Jakaria Rabbi ◽  
...  

Author(s):  
Yun Song

The advent of deep learning has completely reshaped our world. Now, our daily life is fulfilled with many well-known applications that adopt deep learning techniques, such as self-driving cars and face recognition. Furthermore, robotics developed more forms of technology which share the same principle with face recognition, such as hand pose recognition and fingerprint recognition. Image recognition technology requires a huge database and various learning algorithms, such as convolutional neural network and recurrent neural network, that requires lots of computational power, such as CPUs and GPUs. Thus, clients could not be satisfied with the computational resource of the local machine. The cloud resource platform emerged at a historic moment. Docker containers play a significant role of microservices-based applications in the next generation. However, it could not guarantee the quality of service. From clients’ perspective, they have to balance the budget and quality of experiences (e.g. response time). The budget leans on individual business owners and the required Quality of Experience (QoE) depends on usage scenarios of different applications, for instance, an autonomous vehicle requires real-time response, but, unlocking your smartphone can tolerate delays. Plenty of on-going projects developed user-oriented optimization resource allocation to improve the quality of the service. Considering the users’ specifications, including accelerating the training process and specifying the quality of experience, this thesis proposes two differentiate containers scheduling for deep learning applications: TRADL and DQoES .


2022 ◽  
Author(s):  
Hang Du ◽  
Hailin Shi ◽  
Dan Zeng ◽  
Xiao-Ping Zhang ◽  
Tao Mei

Face recognition is one of the most popular and long-standing topics in computer vision. With the recent development of deep learning techniques and large-scale datasets, deep face recognition has made remarkable progress and been widely used in many real-world applications. Given a natural image or video frame as input, an end-to-end deep face recognition system outputs the face feature for recognition. To achieve this, a typical end-to-end system is built with three key elements: face detection, face alignment, and face representation. The face detection locates faces in the image or frame. Then, the face alignment is proceeded to calibrate the faces to the canonical view and crop them with a normalized pixel size. Finally, in the stage of face representation, the discriminative features are extracted from the aligned face for recognition. Nowadays, all of the three elements are fulfilled by the technique of deep convolutional neural network. In this survey article, we present a comprehensive review about the recent advance of each element of the end-to-end deep face recognition, since the thriving deep learning techniques have greatly improved the capability of them. To start with, we present an overview of the end-to-end deep face recognition. Then, we review the advance of each element, respectively, covering many aspects such as the to-date algorithm designs, evaluation metrics, datasets, performance comparison, existing challenges, and promising directions for future research. Also, we provide a detailed discussion about the effect of each element on its subsequent elements and the holistic system. Through this survey, we wish to bring contributions in two aspects: first, readers can conveniently identify the methods which are quite strong-baseline style in the subcategory for further exploration; second, one can also employ suitable methods for establishing a state-of-the-art end-to-end face recognition system from scratch.


Sign in / Sign up

Export Citation Format

Share Document