scholarly journals Tamper video detection and localization using an adaptive segmentation and Deep network technique

Author(s):  
Malle Raveendra ◽  
K Nagireddy
Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2671 ◽  
Author(s):  
Chunsheng Liu ◽  
Yu Guo ◽  
Shuang Li ◽  
Faliang Chang

You Only Look Once (YOLO) deep network can detect objects quickly with high precision and has been successfully applied in many detection problems. The main shortcoming of YOLO network is that YOLO network usually cannot achieve high precision when dealing with small-size object detection in high resolution images. To overcome this problem, we propose an effective region proposal extraction method for YOLO network to constitute an entire detection structure named ACF-PR-YOLO, and take the cyclist detection problem to show our methods. Instead of directly using the generated region proposals for classification or regression like most region proposal methods do, we generate large-size potential regions containing objects for the following deep network. The proposed ACF-PR-YOLO structure includes three main parts. Firstly, a region proposal extraction method based on aggregated channel feature (ACF) is proposed, called ACF based region proposal (ACF-PR) method. In ACF-PR, ACF is firstly utilized to fast extract candidates and then a bounding boxes merging and extending method is designed to merge the bounding boxes into correct region proposals for the following YOLO net. Secondly, we design suitable YOLO net for fine detection in the region proposals generated by ACF-PR. Lastly, we design a post-processing step, in which the results of YOLO net are mapped into the original image outputting the detection and localization results. Experiments performed on the Tsinghua-Daimler Cyclist Benchmark with high resolution images and complex scenes show that the proposed method outperforms the other tested representative detection methods in average precision, and that it outperforms YOLOv3 by 13.69 % average precision and outperforms SSD by 25.27 % average precision.


2006 ◽  
Author(s):  
Elizabeth T. Davis ◽  
Kenneth Hailston ◽  
Eileen Kraemer ◽  
Ashley Hamilton-Taylor ◽  
Philippa Rhodes ◽  
...  

2016 ◽  
Vol 2016 (7) ◽  
pp. 1-6
Author(s):  
Yaqi Wang ◽  
Liangrui Peng ◽  
Shengjin Wang ◽  
Xiaoqing Ding

2020 ◽  
Vol 71 (7) ◽  
pp. 828-839
Author(s):  
Thinh Hoang Dinh ◽  
Hieu Le Thi Hong

Autonomous landing of rotary wing type unmanned aerial vehicles is a challenging problem and key to autonomous aerial fleet operation. We propose a method for localizing the UAV around the helipad, that is to estimate the relative position of the helipad with respect to the UAV. This data is highly desirable to design controllers that have robust and consistent control characteristics and can find applications in search – rescue operations. AI-based neural network is set up for helipad detection, followed by optimization by the localization algorithm. The performance of this approach is compared against fiducial marker approach, demonstrating good consensus between two estimations


Sign in / Sign up

Export Citation Format

Share Document