Development of a simple and rapid protocol for the production of customized intertypic recombinant polioviruses

2012 ◽  
Vol 186 (1-2) ◽  
pp. 104-108 ◽  
Author(s):  
Maël Bessaud ◽  
Francis Delpeyroux
1996 ◽  
Vol 184 (2) ◽  
pp. 659-664 ◽  
Author(s):  
T Yoshikawa ◽  
J M Hill ◽  
L R Stanberry ◽  
N Bourne ◽  
J F Kurawadwala ◽  
...  

After replication at sites of initial inoculation, herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) establish lifelong latent infections of the sensory and autonomic neurons of the ganglia serving those sites. Periodically, the virus reactivates from these neurons, and travels centripetally along the neuronal axon to cause recurrent epithelial infection. The major clinically observed difference between infections with herpes simplex virus type 1 and type 2 is the anatomic site specificity of recurrence. HSV-1 reactivates most efficiently and frequently from trigeminal ganglia, causing recurrent ocular and oral-facial lesions, while HSV-2 reactivates primarily from sacral ganglia causing recurrent genital lesions. An intertypic recombinant virus was constructed and evaluated in animal models of recurrent ocular and genital herpes. Substitution of a 2.8-kbp region from the HSV-1 latency-associated transcript (LAT) for native HSV-2 sequences caused HSV-2 to reactivate with an HSV-1 phenotype in both animal models. The HSV-2 phenotype was restored by replacing the mutated sequences with wild-type HSV-2 LAT-region sequences. These sequences or their products must act specifically in the cellular environments of trigeminal and sacral neurons to promote the reactivation patterns characteristic of each virus.


1999 ◽  
Vol 65 (8) ◽  
pp. 3534-3539 ◽  
Author(s):  
Maurizio Divizia ◽  
Leonardo Palombi ◽  
Ersilia Buonomo ◽  
Domenica Donia ◽  
Vito Ruscio ◽  
...  

ABSTRACT Between April and December 1996, a serious outbreak of poliomyelitis occurred in Albania; almost 140 subjects were involved, and the episode presented an unusually high mortality rate (12%). During the outbreak, water samples from the Lana River in Tirana, Albania, and stool samples from two cases of paralytic poliomyelitis were collected and analyzed for the presence of polioviruses. Six polioviruses were isolated from the environmental and human samples, according to standard methods. All the samples were characterized by partial genomic sequencing of 330 bases across the 5′ untranslated region (5′-UTR) (nucleotide positions 200 to 530) and of 300 bases across the VP1 region (nucleotide positions 2474 to 2774). Comparison of these sequences with those present in data banks permitted the identification of environmental isolates Lana A and Lana B as, respectively, a Sabin-like type 2 poliovirus and an intertypic recombinant poliovirus (Sabin-like type 2/wild type 1), both bearing a G instead of an A at nucleotide position 481. The two other environmental polioviruses were similar to the isolates from the paralytic cases. They were characterized by a peculiar 5′-UTR and by a VP1 region showing 98% homology with the Albanian epidemic type 1 isolates reported by other authors. This study confirms the environmental circulation in Albania of recombinant poliovirus strains, likely sustained by a massive vaccination effort and by the presence in the environment of a type 1 poliovirus, as isolated from the Lana River in Tirana about 2 months before the first case of symptomatic acute flaccid paralysis was reported in this town.


2014 ◽  
Vol 61 (4) ◽  
pp. 496-502 ◽  
Author(s):  
Adriana E. Kajon ◽  
Daryl Lamson ◽  
Matthew Shudt ◽  
Zacharoula Oikonomopoulou ◽  
Brian Fisher ◽  
...  

2018 ◽  
Author(s):  
Andrew Woodman ◽  
Kuo-Ming Lee ◽  
Richard Janissen ◽  
Yu-Nong Gong ◽  
Nynke Dekker ◽  
...  

AbstractEnteroviruses are well known for their ability to cause neurological damage and paralysis. The model enterovirus is poliovirus (PV), the causative agent of poliomyelitis, a condition characterized by acute flaccid paralysis. A related virus, enterovirus 71 (EV-A71), causes similar clinical outcomes in recurrent outbreaks throughout Asia. Retrospective phylogenetic analysis has shown that recombination between circulating strains of EV-A71 produces the outbreak-associated strains which exhibit increased virulence and/or transmissibility. While studies on the mechanism(s) of recombination in PV are ongoing in several laboratories, little is known about factors that influence recombination in EV-A71. We have developed a cell-based assay to study recombination of EV-A71 based upon previously reported assays for poliovirus recombination. Our results show that: (1) EV-A71 strain-type and RNA sequence diversity impacts recombination frequency in a predictable manner that mimics the observations found in nature; (2) recombination is primarily a replicative process mediated by the RNA-dependent RNA polymerase (RdRp); (3) a mutation shown to reduce recombination in PV (L420A) similarly reduces EV-A71 recombination suggesting conservation in mechanism(s); and (4) sequencing of intertypic recombinant genomes indicates that template-switching is by a mechanism that requires some sequence homology at the recombination junction and that the triggers for template-switching may be sequence independent. The development of this recombination assay will permit further investigation on the interplay between replication, recombination and disease.


Sign in / Sign up

Export Citation Format

Share Document