recombination junction
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Carol J Gallione ◽  
Matthew R Detter ◽  
Henrietta M Christmas ◽  
Cornelia Lee ◽  
Douglas A Marchuk

Abstract Cerebral cavernous malformations (CCM) are vascular malformations consisting of collections of enlarged capillaries occurring in the brain or spinal cord. These vascular malformations can occur sporadically or susceptibility to develop these can be inherited as an autosomal dominant trait due to mutation in one of three genes. Over a decade ago, we described a 77.6 Kb germline deletion spanning exons 2-10 in the CCM2 gene found in multiple affected individuals from seemingly unrelated families. Segregation analysis using linked, microsatellite markers indicated that this deletion may have arisen at least twice independently. In the ensuing decades, many more CCM patients have been identified with this deletion. In this present study we examined 27 reportedly unrelated affected individuals with this deletion. To investigate the origin of the deletion at base pair level resolution, we sequenced approximately 10 Kb upstream and downstream from the recombination junction on the deleted allele. All patients showed the identical SNP haplotype across this combined 20 Kb interval. In parallel, genealogical records have traced 11 of these individuals to five separate pedigrees dating as far back as the 1600-1700’s. These haplotype and genealogical data suggest that these families and the remaining “unrelated” samples converge on a common ancestor due to a founder mutation occurring centuries ago on the North American continent. We also note that another gene, NACAD, is included in this deletion. Although patient self-reporting does not indicate an apparent phenotypic consequence for heterozygous deletion of NACAD, further investigation is warranted for these patients.


Author(s):  
Claire Blaga ◽  
Gabriel Christmann ◽  
Mathieu Boccard ◽  
Christophe Ballif ◽  
Sylvain Nicolay ◽  
...  

As the efficiency of commercial crystalline silicon solar cells approaches their maximum theoretical efficiency, tandem architectures are becoming increasingly popular to continue the push to higher photovoltaic performances. Thin-film materials...


Author(s):  
Ramakrishna Madaka ◽  
Dinesh Kumar ◽  
Ashish K. Singh ◽  
Md. Seraj Uddin ◽  
Jatin Kumar Rath

2020 ◽  
Vol 7 (11) ◽  
pp. 2791-2809
Author(s):  
Michele De Bastiani ◽  
Anand S. Subbiah ◽  
Erkan Aydin ◽  
Furkan H. Isikgor ◽  
Thomas G. Allen ◽  
...  

Here, we review the physics and the technology of the recombination junction in perovskite-based tandem solar cells, with a summary of the most successful works.


2018 ◽  
Vol 4 (12) ◽  
pp. eaau9711 ◽  
Author(s):  
Heping Shen ◽  
Stefan T. Omelchenko ◽  
Daniel A. Jacobs ◽  
Sisir Yalamanchili ◽  
Yimao Wan ◽  
...  

Increasing the power conversion efficiency of silicon (Si) photovoltaics is a key enabler for continued reductions in the cost of solar electricity. Here, we describe a two-terminal perovskite/Si tandem design that increases the Si cell’s output in the simplest possible manner: by placing a perovskite cell directly on top of the Si bottom cell. The advantageous omission of a conventional interlayer eliminates both optical losses and processing steps and is enabled by the low contact resistivity attainable between n-type TiO2and Si, established here using atomic layer deposition. We fabricated proof-of-concept perovskite/Si tandems on both homojunction and passivating contact heterojunction Si cells to demonstrate the broad applicability of the interlayer-free concept. Stabilized efficiencies of 22.9 and 24.1% were obtained for the homojunction and passivating contact heterojunction tandems, respectively, which could be readily improved by reducing optical losses elsewhere in the device. This work highlights the potential of emerging perovskite photovoltaics to enable low-cost, high-efficiency tandem devices through straightforward integration with commercially relevant Si solar cells.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Andrew Woodman ◽  
Kuo-Ming Lee ◽  
Richard Janissen ◽  
Yu-Nong Gong ◽  
Nynke H. Dekker ◽  
...  

ABSTRACTEnteroviruses are well known for their ability to cause neurological damage and paralysis. The model enterovirus is poliovirus (PV), the causative agent of poliomyelitis, a condition characterized by acute flaccid paralysis. A related virus, enterovirus 71 (EV-A71), causes similar clinical outcomes in recurrent outbreaks throughout Asia. Retrospective phylogenetic analysis has shown that recombination between circulating strains of EV-A71 produces the outbreak-associated strains which exhibit increased virulence and/or transmissibility. While studies on the mechanism(s) of recombination in PV are ongoing in several laboratories, little is known about factors that influence recombination in EV-A71. We have developed a cell-based assay to study recombination of EV-A71 based upon previously reported assays for poliovirus recombination. Our results show that (i) EV-A71 strain type and RNA sequence diversity impacts recombination frequency in a predictable manner that mimics the observations found in nature; (ii) recombination is primarily a replicative process mediated by the RNA-dependent RNA polymerase; (iii) a mutation shown to reduce recombination in PV (L420A) similarly reduces EV-A71 recombination, suggesting conservation in mechanism(s); and (iv) sequencing of intraserotypic recombinant genomes indicates that template switching occurs by a mechanism that may require some sequence homology at the recombination junction and that the triggers for template switching may be sequence independent. The development of this recombination assay will permit further investigation on the interplay between replication, recombination and disease.IMPORTANCERecombination is a mechanism that contributes to genetic diversity. We describe the first assay to study EV-A71 recombination. Results from this assay mimic what is observed in nature and can be used by others to predict future recombination events within the enterovirus species A group. In addition, our results highlight the central role played by the viral RNA-dependent RNA polymerase (RdRp) in the recombination process. Further, our results show that changes to a conserved residue in the RdRp from different species groups have a similar impact on viable recombinant virus yields, which is indicative of conservation in mechanism.


2018 ◽  
Author(s):  
Andrew Woodman ◽  
Kuo-Ming Lee ◽  
Richard Janissen ◽  
Yu-Nong Gong ◽  
Nynke Dekker ◽  
...  

AbstractEnteroviruses are well known for their ability to cause neurological damage and paralysis. The model enterovirus is poliovirus (PV), the causative agent of poliomyelitis, a condition characterized by acute flaccid paralysis. A related virus, enterovirus 71 (EV-A71), causes similar clinical outcomes in recurrent outbreaks throughout Asia. Retrospective phylogenetic analysis has shown that recombination between circulating strains of EV-A71 produces the outbreak-associated strains which exhibit increased virulence and/or transmissibility. While studies on the mechanism(s) of recombination in PV are ongoing in several laboratories, little is known about factors that influence recombination in EV-A71. We have developed a cell-based assay to study recombination of EV-A71 based upon previously reported assays for poliovirus recombination. Our results show that: (1) EV-A71 strain-type and RNA sequence diversity impacts recombination frequency in a predictable manner that mimics the observations found in nature; (2) recombination is primarily a replicative process mediated by the RNA-dependent RNA polymerase (RdRp); (3) a mutation shown to reduce recombination in PV (L420A) similarly reduces EV-A71 recombination suggesting conservation in mechanism(s); and (4) sequencing of intertypic recombinant genomes indicates that template-switching is by a mechanism that requires some sequence homology at the recombination junction and that the triggers for template-switching may be sequence independent. The development of this recombination assay will permit further investigation on the interplay between replication, recombination and disease.


2018 ◽  
Vol 33 (7) ◽  
pp. 075017
Author(s):  
Sunhwa Lee ◽  
Jinjoo Park ◽  
Sangho Kim ◽  
Youngkuk Kim ◽  
Chaehwan Jeong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document