scholarly journals Validation of specific quantitative real-time RT-PCR assay panel for Infectious Bronchitis using synthetic DNA standards and clinical specimens

2020 ◽  
Vol 276 ◽  
pp. 113773
Author(s):  
Jongseo Mo ◽  
Michael Angelichio ◽  
Lisa Gow ◽  
Valerie Leathers ◽  
Mark W. Jackwood
2010 ◽  
Vol 47 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Sylvie Pillet ◽  
Geneviève Billaud ◽  
Shabir Omar ◽  
Bruno Lina ◽  
Bruno Pozzetto ◽  
...  
Keyword(s):  
R Gene ◽  
Rt Pcr ◽  

2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Nawal El Houmami ◽  
Guillaume André Durand ◽  
Janek Bzdrenga ◽  
Anne Darmon ◽  
Philippe Minodier ◽  
...  

ABSTRACTKingella kingaeis a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting thegroELgene and the RTX locus ofK. kingae. However, recent studies showed that real-time PCR (RT-PCR) assays targeting theKingellasp. RTX locus that are currently available for the diagnosis ofK. kingaeinfection lack specificity because they could not distinguish betweenK. kingaeand the recently describedKingella negevensisspecies. Furthermore,in silicoanalysis of thegroELgene from a large collection of 45K. kingaestrains showed that primers and probes fromK. kingaegroEL-based RT-PCR assays display a few mismatches withK. kingae groELvariations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative togroEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, aK. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of theK. kingae mdhgene from 20 distinct sequence types ofK. kingae. This novelK. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnoseK. kingaeinfections and carriage in 104 clinical specimens from children between 7 months and 7 years old.


2009 ◽  
Vol 46 ◽  
pp. S13
Author(s):  
S. Pillet ◽  
G. Billaud ◽  
S. Omar ◽  
B. Lina ◽  
B. Pozzetto ◽  
...  
Keyword(s):  
R Gene ◽  
Rt Pcr ◽  

2020 ◽  
Vol 21 (7) ◽  
pp. 2574 ◽  
Author(s):  
Cyril Chik-Yan Yip ◽  
Chi-Chun Ho ◽  
Jasper Fuk-Woo Chan ◽  
Kelvin Kai-Wang To ◽  
Helen Shuk-Ying Chan ◽  
...  

The pandemic novel coronavirus infection, Coronavirus Disease 2019 (COVID-19), has affected at least 190 countries or territories, with 465,915 confirmed cases and 21,031 deaths. In a containment-based strategy, rapid, sensitive and specific testing is important in epidemiological control and clinical management. Using 96 SARS-CoV-2 and 104 non-SARS-CoV-2 coronavirus genomes and our in-house program, GolayMetaMiner, four specific regions longer than 50 nucleotides in the SARS-CoV-2 genome were identified. Primers were designed to target the longest and previously untargeted nsp2 region and optimized as a probe-free real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. The new COVID-19-nsp2 assay had a limit of detection (LOD) of 1.8 TCID50/mL and did not amplify other human-pathogenic coronaviruses and respiratory viruses. Assay reproducibility in terms of cycle threshold (Cp) values was satisfactory, with the total imprecision (% CV) values well below 5%. Evaluation of the new assay using 59 clinical specimens from 14 confirmed cases showed 100% concordance with our previously developed COVID-19-RdRp/Hel reference assay. A rapid, sensitive, SARS-CoV-2-specific real-time RT-PCR assay, COVID-19-nsp2, was developed.


2021 ◽  
Author(s):  
Carolin Bier ◽  
Anke Edelmann ◽  
Kathrin Theil ◽  
Rolf Schwarzer ◽  
Maria Deichner ◽  
...  

Background. SARS-CoV-2 causes COVID-19, which can be fatal and is responsible for a global pandemic. Variants with increased transmissibility or the potential to evade immunity have emerged and represent a threat to global pandemic control. Variants of concern (VOC) can be identified by sequencing of viral RNA, or by more rapid methods for detection of subsets of signature mutations. Methods. We developed a multiplex, real-time RT-PCR assay (cobas SARS-CoV-2 Variant Set 1) for the qualitative detection and differentiation of three key SARS-CoV-2 mutations in the viral spike protein: del 69-70, E484K and N501Y. Analytical sensitivity and accuracy were evaluated at three testing sites using clinical specimens from patients infected with SARS-CoV-2 variants belonging to several different lineages, including B.1.1.7, B.1.351, and P.1. Results. The limit of detection for E484K was between 180 and 620 IU/mL for the three different isolates tested. For N501Y, the LOD was between 270 and 720 IU/mL (five isolates), while for del 69-70, it was 80 - 92 IU/mL (two isolates). Valid test results were obtained with all clinical specimens that were positive using routine diagnostic tests. Compared to sequencing (Sanger and next-generation), test results were 100% concordant at all three loci; no false positive or false negative results were observed. Conclusions. Data collected at three independent laboratories indicates excellent performance and concordance of cobas SARS-CoV-2 Variant Set 1 with sequencing. New sets of primers and probes that target additional loci can be rapidly deployed in response to the identification of other emerging variants.


2006 ◽  
Vol 138 (1-2) ◽  
pp. 60-65 ◽  
Author(s):  
Scott A. Callison ◽  
Deborah A. Hilt ◽  
Tye O. Boynton ◽  
Brenda F. Sample ◽  
Robert Robison ◽  
...  

1998 ◽  
Vol 26 (5) ◽  
pp. 629-634
Author(s):  
Emiliana Falcone ◽  
Edoardo Vignolo ◽  
Livia Di Trani ◽  
Simona Puzelli ◽  
Maria Tollis

A reverse transcriptase polymerase chain reaction (RT-PCR) assay specific for identifying avian infectious bronchitis virus (IBV) in poultry vaccines, and the serological response to IBV induced by the inoculation of chicks with a Newcastle disease vaccine spiked with the Massachusetts strain of IBV, were compared for their ability to detect IBV as a contaminant of avian vaccines. The sensitivity of the IBV-RT-PCR assay provided results which were at least equivalent to the biological effect produced by the inoculation of chicks, allowing this assay to be considered a valid alternative to animal testing in the quality control of avian immunologicals. This procedure can easily be adapted to detect a number of contaminants for which the in vivo test still represents the only available method of detection.


Sign in / Sign up

Export Citation Format

Share Document