Generation and characterization of a non-stationary flow field in a small-scale wind tunnel using a multi-blade flow device

Author(s):  
Viet Le ◽  
Luca Caracoglia
2009 ◽  
Vol 70 (8) ◽  
pp. 1073-1080 ◽  
Author(s):  
Ennes Sarradj ◽  
Christoph Fritzsche ◽  
Thomas Geyer ◽  
Jens Giesler

2020 ◽  
Vol 11 (4) ◽  
pp. 1009-1023 ◽  
Author(s):  
Junaid Ullah ◽  
Aleš Prachař ◽  
Miroslav Šmíd ◽  
Avraham Seifert ◽  
Vitaly Soudakov ◽  
...  

Abstract RANS simulations of a generic ultra-high bypass ratio engine high-lift configuration were conducted in three different environments. The purpose of this study is to assess small scale tests in an atmospheric closed test section wind tunnel regarding transferability to large scale tests in an open-jet wind tunnel. Special emphasis was placed on the flow field in the separation prone region downstream from the extended slat cut-out. Validation with wind tunnel test data shows an adequate agreement with CFD results. The cross-comparison of the three sets of simulations allowed to identify the effects of the Reynolds number and the wind tunnel walls on the flow field separately. The simulations reveal significant blockage effects and corner flow separation induced by the test section walls. By comparison, the Reynolds number effects are negligible. A decrease of the incidence angle for the small scale model allows to successfully reproduce the flow field of the large scale model despite severe wind tunnel wall effects.


10.2514/3.902 ◽  
1997 ◽  
Vol 11 ◽  
pp. 339-345
Author(s):  
James P. Sawyer ◽  
S. Rao ◽  
Mohammad A. Rob ◽  
Larry H. Mack ◽  
Sivaram Arepalli ◽  
...  
Keyword(s):  

Author(s):  
Makoto Matsui ◽  
Shingo Yoneda ◽  
Satoshi Nomura ◽  
Yoshiki Yamagiwa ◽  
Kimiya Komurasaki ◽  
...  
Keyword(s):  

2013 ◽  
Vol 48 (1) ◽  
pp. 827-836 ◽  
Author(s):  
Anna K. Frey ◽  
Karri Saarnio ◽  
Heikki Lamberg ◽  
Fanni Mylläri ◽  
Panu Karjalainen ◽  
...  

Author(s):  
Chenhui Yu ◽  
Fei Liao ◽  
Haibo Ji ◽  
Wenhua Wu

With the increasing requirement of Reynolds number simulation in wind tunnel tests, the cryogenic wind tunnel is considered as a feasible method to realize high Reynolds number. Characteristic model-based adaptive controller design method is introduced to flow field control problem of the cryogenic wind tunnel. A class of nonlinear multi-input multi-output (MIMO) system is given for theoretical research that is related to flow field control of the cryogenic wind tunnel. The characteristic model in the form of second-order time-varying difference equations is provided to represent the system. A characteristic model-based adaptive controller is also designed correspondingly. The stability analysis of the closed loop system composed of the characteristic model or the exact discrete-time model and the proposed controller is investigated respectively. Numerical simulation is presented to illustrate the effectiveness of this control method. The modeling and control problem based on characteristic model method for a class of MIMO system are studied and first applied to the cryogenic wind tunnel control field.


Sign in / Sign up

Export Citation Format

Share Document