scholarly journals A new user similarity model to improve the accuracy of collaborative filtering

2014 ◽  
Vol 56 ◽  
pp. 156-166 ◽  
Author(s):  
Haifeng Liu ◽  
Zheng Hu ◽  
Ahmad Mian ◽  
Hui Tian ◽  
Xuzhen Zhu
2017 ◽  
Vol 418-419 ◽  
pp. 102-118 ◽  
Author(s):  
Yong Wang ◽  
Jiangzhou Deng ◽  
Jerry Gao ◽  
Pu Zhang

2016 ◽  
Vol 12 (2) ◽  
pp. 126-149 ◽  
Author(s):  
Masoud Mansoury ◽  
Mehdi Shajari

Purpose This paper aims to improve the recommendations performance for cold-start users and controversial items. Collaborative filtering (CF) generates recommendations on the basis of similarity between users. It uses the opinions of similar users to generate the recommendation for an active user. As a similarity model or a neighbor selection function is the key element for effectiveness of CF, many variations of CF are proposed. However, these methods are not very effective, especially for users who provide few ratings (i.e. cold-start users). Design/methodology/approach A new user similarity model is proposed that focuses on improving recommendations performance for cold-start users and controversial items. To show the validity of the authors’ similarity model, they conducted some experiments and showed the effectiveness of this model in calculating similarity values between users even when only few ratings are available. In addition, the authors applied their user similarity model to a recommender system and analyzed its results. Findings Experiments on two real-world data sets are implemented and compared with some other CF techniques. The results show that the authors’ approach outperforms previous CF techniques in coverage metric while preserves accuracy for cold-start users and controversial items. Originality/value In the proposed approach, the conditions in which CF is unable to generate accurate recommendations are addressed. These conditions affect CF performance adversely, especially in the cold-start users’ condition. The authors show that their similarity model overcomes CF weaknesses effectively and improve its performance even in the cold users’ condition.


2021 ◽  
Vol 11 (20) ◽  
pp. 9554
Author(s):  
Jianjun Ni ◽  
Yu Cai ◽  
Guangyi Tang ◽  
Yingjuan Xie

The recommendation algorithm is a very important and challenging issue for a personal recommender system. The collaborative filtering recommendation algorithm is one of the most popular and effective recommendation algorithms. However, the traditional collaborative filtering recommendation algorithm does not fully consider the impact of popular items and user characteristics on the recommendation results. To solve these problems, an improved collaborative filtering algorithm is proposed, which is based on the Term Frequency-Inverse Document Frequency (TF-IDF) method and user characteristics. In the proposed algorithm, an improved TF-IDF method is used to calculate the user similarity on the basis of rating data first. Secondly, the multi-dimensional characteristics information of users is used to calculate the user similarity by a fuzzy membership method. Then, the above two user similarities are fused based on an adaptive weighted algorithm. Finally, some experiments are conducted on the movie public data set, and the experimental results show that the proposed method has better performance than that of the state of the art.


2021 ◽  
Vol 105 ◽  
pp. 309-317
Author(s):  
Xue Han ◽  
Zhong Wang ◽  
Hui Jun Xu

The traditional collaborative filtering recommendation algorithm has the defects of sparse score matrix, weak scalability and user interest deviation, which lead to the low efficiency of algorithm and low accuracy of score prediction. Aiming at the above problems, this paper proposed a time-weighted collaborative filtering algorithm based on improved Mini Batch K-Means clustering. Firstly, the algorithm selected the Pearson correlation coefficient to improve the Mini Batch K-Means clustering, and used the improved Mini Batch K-Means algorithm to cluster the sparse scoring matrix, calculated the user interest score to complete the filling of the sparse matrix. Then, considering the influence of user interest drift with time, the algorithm introduced the Newton cooling time-weighted to improve user similarity. And then calculated user similarity based on the filled score matrix, which helped to get the last predicted score of unrated items The experimental results show that, compared with the traditional collaborative filtering algorithms, the mean absolute error of Proposed improved algorithm is d, and the Precision, Recall and F1 value of MBKT-CF also get a large improvement, which has a higher rating prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document