Game-theoretic rough sets for recommender systems

2014 ◽  
Vol 72 ◽  
pp. 96-107 ◽  
Author(s):  
Nouman Azam ◽  
JingTao Yao
2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Xu He ◽  
Fan Min ◽  
William Zhu

Granular association rules reveal patterns hidden in many-to-many relationships which are common in relational databases. In recommender systems, these rules are appropriate for cold-start recommendation, where a customer or a product has just entered the system. An example of such rules might be “40% men like at least 30% kinds of alcohol; 45% customers are men and 6% products are alcohol.” Mining such rules is a challenging problem due to pattern explosion. In this paper, we build a new type of parametric rough sets on two universes and propose an efficient rule mining algorithm based on the new model. Specifically, the model is deliberately defined such that the parameter corresponds to one threshold of rules. The algorithm benefits from the lower approximation operator in the new model. Experiments on two real-world data sets show that the new algorithm is significantly faster than an existing algorithm, and the performance of recommender systems is stable.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 740 ◽  
Author(s):  
Syed Manzar Abbas ◽  
Khubaib Amjad Alam ◽  
Shahaboddin Shamshirband

Context-aware video recommender systems (CAVRS) seek to improve recommendation performance by incorporating contextual features along with the conventional user-item ratings used by video recommender systems. In addition, the selection of influential and relevant contexts has a significant effect on the performance of CAVRS. However, it is not guaranteed that, under the same contextual scenario, all the items are evaluated by users for providing dense contextual ratings. This problem cause contextual sparsity in CAVRS because the influence of each contextual factor in traditional CAVRS assumes the weights of contexts homogeneously for each of the recommendations. Hence, the selection of influencing contexts with minimal conflicts is identified as a potential research challenge. This study aims at resolving the contextual sparsity problem to leverage user interactions at varying contexts with an item in CAVRS. This problem may be investigated by considering a formal approximation of contextual attributes. For the purpose of improving the accuracy of recommendation process, we have proposed a novel contextual information selection process using Soft-Rough Sets. The proposed model will select a minimal set of influencing contexts using a weights assign process by Soft-Rough sets. Moreover, the proposed algorithm has been extensively evaluated using “LDOS-CoMoDa” dataset, and the outcome signifies the accuracy of our approach in handling contextual sparsity by exploiting relevant contextual factors. The proposed model outperforms existing solutions by identifying relevant contexts efficiently based on certainty, strength, and relevancy for effective recommendations.


Sign in / Sign up

Export Citation Format

Share Document