A multi-task learning approach for improving travel recommendation with keywords generation

2021 ◽  
Vol 233 ◽  
pp. 107521
Author(s):  
Lei Chen ◽  
Jie Cao ◽  
Guixiang Zhu ◽  
Youquan Wang ◽  
Weichao Liang
2022 ◽  
Author(s):  
Maede Maftouni ◽  
Bo Shen ◽  
Andrew Chung Chee Law ◽  
Niloofar Ayoobi Yazdi ◽  
Zhenyu Kong

<p>The global extent of COVID-19 mutations and the consequent depletion of hospital resources highlighted the necessity of effective computer-assisted medical diagnosis. COVID-19 detection mediated by deep learning models can help diagnose this highly contagious disease and lower infectivity and mortality rates. Computed tomography (CT) is the preferred imaging modality for building automatic COVID-19 screening and diagnosis models. It is well-known that the training set size significantly impacts the performance and generalization of deep learning models. However, accessing a large dataset of CT scan images from an emerging disease like COVID-19 is challenging. Therefore, data efficiency becomes a significant factor in choosing a learning model. To this end, we present a multi-task learning approach, namely, a mask-guided attention (MGA) classifier, to improve the generalization and data efficiency of COVID-19 classification on lung CT scan images.</p><p>The novelty of this method is compensating for the scarcity of data by employing more supervision with lesion masks, increasing the sensitivity of the model to COVID-19 manifestations, and helping both generalization and classification performance. Our proposed model achieves better overall performance than the single-task baseline and state-of-the-art models, as measured by various popular metrics. In our experiment with different percentages of data from our curated dataset, the classification performance gain from this multi-task learning approach is more significant for the smaller training sizes. Furthermore, experimental results demonstrate that our method enhances the focus on the lesions, as witnessed by both</p><p>attention and attribution maps, resulting in a more interpretable model.</p>


Author(s):  
Wei Zhao ◽  
Benyou Wang ◽  
Jianbo Ye ◽  
Min Yang ◽  
Zhou Zhao ◽  
...  

In this paper, we propose a Multi-task Learning Approach for Image Captioning (MLAIC ), motivated by the fact that humans have no difficulty performing such task because they possess capabilities of multiple domains. Specifically, MLAIC consists of three key components: (i) A multi-object classification model that learns rich category-aware image representations using a CNN image encoder; (ii) A syntax generation model that learns better syntax-aware LSTM based decoder; (iii) An image captioning model that generates image descriptions in text, sharing its CNN encoder and LSTM decoder with the object classification task and the syntax generation task, respectively. In particular, the image captioning model can benefit from the additional object categorization and syntax knowledge. To verify the effectiveness of our approach, we conduct extensive experiments on MS-COCO dataset. The experimental results demonstrate that our model achieves impressive results compared to other strong competitors.


2021 ◽  
Author(s):  
Cairong Yan ◽  
Shuai Liu ◽  
Yanting Zhang ◽  
Zijian Wang ◽  
Pengwei Wang

Author(s):  
Chi Zhang ◽  
Peilin Zhao ◽  
Shuji Hao ◽  
Yeng Chai Soh ◽  
Bu Sung Lee

Sign in / Sign up

Export Citation Format

Share Document