Potential classroom stressors of teachers: An audiovisual and physiological approach

2021 ◽  
Vol 75 ◽  
pp. 101495
Author(s):  
Robin Junker ◽  
Monika H. Donker ◽  
Tim Mainhard
1998 ◽  
Vol 79 (4) ◽  
pp. 2013-2024 ◽  
Author(s):  
Albert Y. Hsia ◽  
Robert C. Malenka ◽  
Roger A. Nicoll

Hsia, Albert Y., Robert C. Malenka, and Roger A. Nicoll. Development of excitatory circuitry in the hippocampus. J. Neurophysiol. 79: 2013–2024, 1998. Assessing the development of local circuitry in the hippocampus has relied primarily on anatomic studies. Here we take a physiological approach, to directly evaluate the means by which the mature state of connectivity between CA3 and CA1 hippocampal pyramidal cells is established. Using a technique of comparing miniature excitatory postsynaptic currents (mEPSCs) to EPSCs in response to spontaneously occurring action potentials in CA3 cells, we found that from neonatal to adult ages, functional synapses are created and serve to increase the degree of connectivity between CA3-CA1 cell pairs. Neither the probability of release nor mean quantal size was found to change significantly with age. However, the variability of quantal events decreases substantially as synapses mature. Thus in the hippocampus the developmental strategy for enhancing excitatory synaptic transmission does not appear to involve an increase in the efficacy at individual synapses, but rather an increase in the connectivity between cell pairs.


Author(s):  
Thamer Y. Mutter ◽  
Gerben J. Zylstra

Sphingomonas wittichii RW1 grows on the two related compounds dibenzofuran (DBF) and dibenzo- p -dioxin (DXN) as the sole source of carbon. Previous work by others (P.V. Bunz, R. Falchetto, and A.M. Cook. Biodegradation 4:171-8, 1993, doi: 10.1007/BF00695119) identified two upper pathway meta cleavage product hydrolases (DxnB1 and DxnB2) active on the DBF upper pathway metabolite 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate. We took a physiological approach to determine the role of these two enzymes in the degradation of DBF and DXN by RW1. Single knockouts of either plasmid located dbfB1 or chromosome located dbfB2 had no effect on RW1 growth on either DBF or DXN. However, a double knockout lost the ability to grow on DBF but still grew normally on DXN demonstrating that DbfB1 and DbfB2 are the only hydrolases involved in the DBF upper pathway. Using a transcriptomic-guided approach we identified a constitutively expressed third hydrolase encoded by the chromosomally located SWIT0910 gene. Knockout of SWIT0910 resulted in a strain that no longer grows on DXN but still grows normally on DBF. Thus the DbfB1 and DbfB2 hydrolases function in the DBF but not the DXN catabolic pathway and the SWIT0190 hydrolase functions in the DXN but not the DBF catabolic pathway. Importance S. wittichii RW1 is one of only a few strains known to grow on DXN as the sole course of carbon. Much of the work deciphering the related RW1 DXN and DBF catabolic pathways has involved genome gazing, transcriptomics, proteomics, heterologous expression, and enzyme purification and characterization. Very little research has utilized physiological techniques to precisely dissect the genes and enzymes involved in DBF and DXN degradation. Previous work by others identified and extensively characterized two RW1 upper pathway hydrolases. Our present work demonstrates that these two enzymes are involved in DBF but not DXN degradation. In addition, our work identified a third constitutively expressed hydrolase that is involved in DXN but not DBF degradation. Combined with our previous work, this means that the RW1 DXN upper pathway involves genes from three very different locations in the genome: an initial plasmid-encoded dioxygenase and a ring cleavage enzyme and hydrolase encoded on opposite sides of the chromosome.


Author(s):  
Bethany Bracken ◽  
Calvin Leather ◽  
E. Vincent Cross ◽  
Jerri Stephenson ◽  
Maya Greene ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document