Chlorine and lithium behavior in metasedimentary rocks during prograde metamorphism: A comparative study of exhumed subduction complexes (Catalina Schist and Schistes Lustrés)

Lithos ◽  
2019 ◽  
Vol 336-337 ◽  
pp. 40-53
Author(s):  
Jaime D. Barnes ◽  
Sarah C. Penniston-Dorland ◽  
Gray E. Bebout ◽  
William Hoover ◽  
Grace M. Beaudoin ◽  
...  
2021 ◽  
Author(s):  
Christopher Barnes ◽  
Jarosław Majka ◽  
David Schneider ◽  
Mattia Gilio ◽  
Matteo Alvaro ◽  
...  

<p>            The Seve Nappe Complex (SNC) of the Scandinavian Caledonides represents portions of the Baltican margin that were subducted to mantle depths. Eclogite-bearing sub-units of the SNC provide a record of this important step in orogen development. One such sub-unit is the Vaimok Lens of the SNC in southern Norrbotten. The Vaimok Lens constitutes eclogites hosted within metasedimentary rocks that reached ultra-high pressure (UHP) conditions in the Cambrian/Early Ordovician period. The metasedimentary rocks are typically composed of quartz, white mica, garnet, plagioclase, biotite, clinozoisite, apatite and titanite, and show a pervasive ‘S2’ foliation that developed during exhumation. Garnet is recognized as a relic of prograde metamorphism during subduction, whereas the other minerals represent retrogressive metamorphism during exhumation. To resolve the timing of prograde metamorphism, Lu-Hf geochronology was conducted on metasediment-hosted garnet that preserves prograde, bell-shaped Mn-zoning with a chemical formula of Alm<sub>69-59</sub>Grs<sub>32-24</sub>Sps<sub>13-2</sub>Prp<sub>5-2</sub>. The results indicate garnet growth at 495.3 ± 2.6 Ma. Quartz-in-garnet (QuiG) elastic geobarometry was also conducted on garnet from the same sample, providing pressures of 0.9-1.3 GPa, calculated at 500-700°C. Six samples were obtained for in-situ <sup>40</sup>Ar/<sup>39</sup>Ar geochronology, targeting white mica defining the S2 foliation. Samples can be classified as: 1) low-strain (n: 3), with large (>400 µm width), undeformed micas that are chemically homogeneous (X<sub>Cel</sub>: 0.24-0.35), which yielded a weighted average <sup>40</sup>Ar/<sup>39</sup>Ar population of 470.5 ± 5.9 Ma; 2) high-strain (n: 3), with small (<300 µm width) mica fish with heterogeneous chemistry (X<sub>Cel</sub>: 0.03-0.27), which provided weighted average <sup>40</sup>Ar/<sup>39</sup>Ar populations of 447.6 ± 2.6 Ma and 431.1 ± 4.1 Ma. An additional sample from the basal thrust of the lens that contains large (>300 µm width), homogeneous (X<sub>Cel</sub>: 0.24-0.34) mica was also dated, yielding a population of 414.1 ± 5.8 Ma. Altogether, the data indicates that the Vaimok Lens was subducting by c. 495 Ma. The lens underwent post-decompression cooling at c. 470 Ma, possibly decompressing to 0.9-1.3 GPa by this time. This would equate to an exhumation rate of 3-9 mm/yr. Imbrication of the SNC in southern Norrbotten is taken to be c. 447 Ma. Scandian deformation was active by c. 431 Ma and led to overthrusting of the SNC onto subjacent nappes by latest c. 414 Ma. Both the timescale for subduction and the rates of exhumation for the Vaimok Lens reflect subduction-exhumation dynamics of large UHP terranes. Furthermore, the timing of imbrication and Scandian deformation in southern Norrbotten is similar to estimates along strike of the SNC. These results indicate that the SNC acted as a large UHP terrane that underwent a ~25 Myr cycle of subduction and exhumation during the late Cambrian/Early Ordovician, before being deformed and partially dismembered in subsequent accretionary and collisional events.</p><p> </p><p>Research funded by National Science Centre (Poland) project no. 2014/14/E/ST10/00321 to J. Majka.</p>


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 739
Author(s):  
Ana Roza Llera ◽  
Mercedes Fuertes-Fuente ◽  
Antonia Cepedal ◽  
Agustín Martin-Izard

In Central Galicia, there are occurrences of barren and Li–Sn–Ta-bearing pegmatites hosted by metasedimentary rocks. A number of common and contrasting features between Panceiros pegmatites (barren) and Li–Sn–Ta mineralized Presqueira pegmatite are established in this study. K-feldspar and muscovite have the same trace elements (Rb, Cs, P, Zn, and Ba), but the mineralized one has the highest Rb and Cs and the lowest P contents. The barren bodies show fluorapatite and eosphorite–childrenite replacing early silicates. The mineralized body has primary phosphates (fluorapatite and montebrasite), a metasomatic paragenesis (fluorapatite and goyazite) replacing early silicates, and a late hydrothermal assemblage (vivianite and messelite). Ta–Nb oxides from the Presqueira body show a trend from columbite-(Fe) to tantalite-(Fe) and tapiolite-(Fe). In this body, the Li-aluminosilicate textures support primary crystallization of petalite that was partially transformed into Spodumene + Quartz (SQI) during cooling, and into myrmekite during a Na-metasomatism stage. As a result of both processes, spodumene formed. The geochemical study supports magmatic differentiation increasing from the neighboring granites to the Li–Sn–Ta mineralized pegmatite. In both barren and mineralized bodies, the pegmatite-derived fluids that migrated into the wallrock were enriched in B, F, Li, Rb, and Cs and, moreover, in Sn, Zn, and As.


2020 ◽  
Author(s):  
Bruno Oliveira Ferreira de Souza ◽  
Éve‐Marie Frigon ◽  
Robert Tremblay‐Laliberté ◽  
Christian Casanova ◽  
Denis Boire

2001 ◽  
Vol 268 (6) ◽  
pp. 1739-1748
Author(s):  
Aitor Hierro ◽  
Jesus M. Arizmendi ◽  
Javier De Las Rivas ◽  
M. Angeles Urbaneja ◽  
Adelina Prado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document