Post-collisional, high-Ba-Sr Teixeira Batholith granites: Evidence for recycling of Paleoproterozoic crust in the Alto Pajeú domain, Borborema Province – NE-Brazil

Lithos ◽  
2021 ◽  
Vol 404-405 ◽  
pp. 106469
Author(s):  
Jefferson Valdemiro de Lima ◽  
Ignez de Pinho Guimarães ◽  
Sérgio Pacheco Neves ◽  
Miguel Angelo Stipp Basei ◽  
Adejardo Francisco da Silva Filho ◽  
...  
Keyword(s):  
2021 ◽  
pp. 104283
Author(s):  
Felipe Holanda dos Santos ◽  
Wagner da Silva Amaral ◽  
Kurt Konhauser ◽  
Douglas Teixeira Martins ◽  
Marco Paulo de Castro ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos E. Ganade ◽  
Roberto F. Weinberg ◽  
Fabricio A. Caxito ◽  
Leonardo B. L. Lopes ◽  
Lucas R. Tesser ◽  
...  

AbstractDispersion and deformation of cratonic fragments within orogens require weakening of the craton margins in a process of decratonization. The orogenic Borborema Province, in NE Brazil, is one of several Brasiliano/Pan-African late Neoproterozoic orogens that led to the amalgamation of Gondwana. A common feature of these orogens is that a period of extension and opening of narrow oceans preceded inversion and collision. For the case of the Borborema Province, the São Francisco Craton was pulled away from its other half, the Benino-Nigerian Shield, during an intermittent extension event between 1.0–0.92 and 0.9–0.82 Ga. This was followed by inversion of an embryonic and confined oceanic basin at ca. 0.60 Ga and transpressional orogeny from ca. 0.59 Ga onwards. Here we investigate the boundary region between the north São Francisco Craton and the Borborema Province and demonstrate how cratonic blocks became physically involved in the orogeny. We combine these results with a wide compilation of U–Pb and Nd-isotopic model ages to show that the Borborema Province consists of up to 65% of strongly sheared ancient rocks affiliated with the São Francisco/Benino-Nigerian Craton, separated by major transcurrent shear zones, with only ≈ 15% addition of juvenile material during the Neoproterozoic orogeny. This evolution is repeated across a number of Brasiliano/Pan-African orogens, with significant local variations, and indicate that extension weakened cratonic regions in a process of decratonization that prepared them for involvement in the orogenies, that led to the amalgamation of Gondwana.


2001 ◽  
Vol 173 (1-3) ◽  
pp. 107-123 ◽  
Author(s):  
Hartmut Beurlen ◽  
Marcelo R.R. da Silva ◽  
Claudio de Castro

2007 ◽  
Author(s):  
Adriana Chatack Carmelo ◽  
Roberto A. Vitória de Moraes ◽  
Chris Busnello Fianco ◽  
Gustavo de Assunção Mello ◽  
Loiane Gomes de Moraes ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 893-905 ◽  
Author(s):  
Gaelle Lamarque ◽  
Jordi Julià

Abstract. The depth-dependent anisotropic structure of the lithosphere under the Borborema Province in northeast Brazil has been investigated via harmonic stripping of receiver functions developed at 39 stations in the region. This method retrieves the first (k=1) and second (k=2) degree harmonics of a receiver function dataset, which characterize seismic anisotropy beneath a seismic station. Anisotropic fabrics are in turn directly related to the deformation of the lithosphere from past and current tectonic processes. Our results reveal the presence of anisotropy within the crust and the lithospheric mantle throughout the entire province. Most stations in the continental interior report consistent anisotropic orientations in the crust and lithospheric mantle, suggesting a dominant northeast–southwest pervasive deformation along lithospheric-scale shear zones developed during the Brasiliano–Pan-African orogeny. Several stations aligned along a northeast–southwest trend located above the (now aborted) Mesozoic Cariri–Potiguar rift display large uncertainties for the fast-axis direction. This non-azimuthal anisotropy may be related to a complex anisotropic fabric resulting from a combination of deformation along the ancient collision between Precambrian blocks, Mesozoic extension and thermomechanical erosion dragging by sublithospheric flow. Finally, several stations along the Atlantic coast reveal depth-dependent anisotropic orientations roughly (sub)perpendicular to the margin. These results suggest a more recent overprint, probably related to the presence of frozen anisotropy in the lithosphere due to stretching and rifting during the opening of the South Atlantic.


Sign in / Sign up

Export Citation Format

Share Document