The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair

2013 ◽  
Vol 134 (5-6) ◽  
pp. 196-201 ◽  
Author(s):  
Masafumi Saijo
2020 ◽  
Vol 117 (31) ◽  
pp. 18608-18616 ◽  
Author(s):  
Mingrui Duan ◽  
Kathiresan Selvam ◽  
John J. Wyrick ◽  
Peng Mao

Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that removes RNA polymerase (RNAP)-stalling DNA damage from the transcribed strand (TS) of active genes. TC-NER deficiency in humans is associated with the severe neurological disorder Cockayne syndrome. Initiation of TC-NER is mediated by specific factors such as the human Cockayne syndrome group B (CSB) protein or its yeast homolog Rad26. However, the genome-wide role of CSB/Rad26 in TC-NER, particularly in the context of the chromatin organization, is unclear. Here, we used single-nucleotide resolution UV damage mapping data to show that Rad26 and its ATPase activity is critical for TC-NER downstream of the first (+1) nucleosome in gene coding regions. However, TC-NER on the transcription start site (TSS)-proximal half of the +1 nucleosome is largely independent of Rad26, likely due to high occupancy of the transcription initiation/repair factor TFIIH in this nucleosome. Downstream of the +1 nucleosome, the combination of low TFIIH occupancy and high occupancy of the transcription elongation factor Spt4/Spt5 suppresses TC-NER in Rad26-deficient cells. We show that deletion ofSPT4significantly restores TC-NER across the genome in arad26∆mutant, particularly in the downstream nucleosomes. These data demonstrate that the requirement for Rad26 in TC-NER is modulated by the distribution of TFIIH and Spt4/Spt5 in transcribed chromatin and Rad26 mainly functions downstream of the +1 nucleosome to remove TC-NER suppression by Spt4/Spt5.


1999 ◽  
Vol 27 (16) ◽  
pp. 3276-3282 ◽  
Author(s):  
P. P. H. Van Sloun ◽  
J. G. Jansen ◽  
G. Weeda ◽  
L. H. F. Mullenders ◽  
A. A. van Zeeland ◽  
...  

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jia Feng ◽  
Shuangyan Yao ◽  
Yansong Dong ◽  
Jing Hu ◽  
Malcolm Whiteway ◽  
...  

ABSTRACT In the pathogenic yeast Candida albicans, the DNA damage response contributes to pathogenicity by regulating cell morphology transitions and maintaining survival in response to DNA damage induced by reactive oxygen species (ROS) in host cells. However, the function of nucleotide excision repair (NER) in C. albicans has not been extensively investigated. To better understand the DNA damage response and its role in virulence, we studied the function of the Rad23 nucleotide excision repair protein in detail. The RAD23 deletion strain and overexpression strain both exhibit UV sensitivity, confirming the critical role of RAD23 in the nucleotide excision repair pathway. Genetic interaction assays revealed that the role of RAD23 in the UV response relies on RAD4 but is independent of RAD53, MMS22, and RAD18. RAD4 and RAD23 have similar roles in regulating cell morphogenesis and biofilm formation; however, only RAD23, but not RAD4, plays a negative role in virulence regulation in a mouse model. We found that the RAD23 deletion strain showed decreased survival in a Candida-macrophage interaction assay. Transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) data further revealed that RAD23, but not RAD4, regulates the transcription of a virulence factor, SUN41, suggesting a unique role of RAD23 in virulence regulation. Taking these observations together, our work reveals that the RAD23-related nucleotide excision pathway plays a critical role in the UV response but may not play a direct role in virulence. The virulence-related role of RAD23 may rely on the regulation of several virulence factors, which may give us further understanding about the linkage between DNA damage repair and virulence regulation in C. albicans. IMPORTANCE Candida albicans remains a significant threat to the lives of immunocompromised people. An understanding of the virulence and infection ability of C. albicans cells in the mammalian host may help with clinical treatment and drug discovery. The DNA damage response pathway is closely related to morphology regulation and virulence, as well as the ability to survive in host cells. In this study, we checked the role of the nucleotide excision repair (NER) pathway, the key repair system that functions to remove a large variety of DNA lesions such as those caused by UV light, but whose function has not been well studied in C. albicans. We found that Rad23, but not Rad4, plays a role in virulence that appears independent of the function of the NER pathway. Our research revealed that the NER pathway represented by Rad4/Rad23 may not play a direct role in virulence but that Rad23 may play a unique role in regulating the transcription of virulence genes that may contribute to the virulence of C. albicans.


2012 ◽  
Vol 132 (12) ◽  
pp. 2738-2747 ◽  
Author(s):  
Arash Etemadi ◽  
Farhad Islami ◽  
David H. Phillips ◽  
Roger Godschalk ◽  
Asieh Golozar ◽  
...  

2021 ◽  
pp. 252-270
Author(s):  
Kathiresan Selvam ◽  
Dalton A. Plummer ◽  
Kaitlynne A. Bohm ◽  
John J. Wyrick

2000 ◽  
Vol 275 (11) ◽  
pp. 8044-8050 ◽  
Author(s):  
Geri F. Moolenaar ◽  
M. Flor Pen̆a Herron ◽  
Vania Monaco ◽  
Gijs A. van der Marel ◽  
Jaques H. van Boom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document