The continental shelf pump for CO2 in the North Sea—evidence from summer observation

2005 ◽  
Vol 93 (2-4) ◽  
pp. 131-147 ◽  
Author(s):  
Yann Bozec ◽  
Helmuth Thomas ◽  
Khalid Elkalay ◽  
Hein J.W. de Baar
2005 ◽  
Vol 2 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The North Sea acts as a sink for organic carbon and thus can be characterised as a heterotrophic system. The dominant carbon sink is the final export to the North Atlantic Ocean. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2003 ◽  
Vol 23 (3-4) ◽  
pp. 251-263 ◽  
Author(s):  
Frode Vikebø ◽  
Tore Furevik ◽  
Gunnar Furnes ◽  
Nils Gunnar Kvamstø ◽  
Magnar Reistad

1970 ◽  
Vol 3 (8) ◽  
pp. 522-540
Author(s):  
D.H.N. Johnson

2008 ◽  
Vol 35 ◽  
pp. 1-24 ◽  
Author(s):  
Bernhard Weninger ◽  
Rick Schulting ◽  
Marcel Bradtmöller ◽  
Lee Clare ◽  
Mark Collard ◽  
...  

Around 8200 calBP, large parts of the now submerged North Sea continental shelf (‘Doggerland’) were catastrophically flooded by the Storegga Slide tsunami, one of the largest tsunamis known for the Holocene, which was generated on the Norwegian coastal margin by a submarine landslide. In the present paper, we derive a precise calendric date for the Storegga Slide tsunami, use this date for reconstruction of contemporary coastlines in the North Sea in relation to rapidly rising sea-levels, and discuss the potential effects of the tsunami on the contemporaneous Mesolithic population. One main result of this study is an unexpectedly high tsunami impact assigned to the western regions of Jutland.


1985 ◽  
Vol 4 (2) ◽  
pp. 117-125 ◽  
Author(s):  
John W. Murray

Abstract. The regions studied are all of mid continental shelf depth (70–145 m) and have bottom waters of normal marine salinity. The North Sea has lower bottom water temperatures than those to the west of Scotland. However, the major difference between the two regions is one of tidal and/or wave energy: the northern North Sea is a low energy environment of muddy sand deposition whereas the sampled part of the continental shelf west and north of Scotland is a moderate to high energy environment of medium to coarse biogenic carbonate sedimentation.The physical differences between the two main areas are reflected in the living and dead foraminiferal assemblages. The northern North Sea is a region of free-living species whereas the continental shelf west of Scotland has immobile and mobile attached species living on firm substrates. The northern North Sea is very fertile and has high standing crop values.The dead assemblages are small in size and very abundant. To the west of Scotland the sea is less fertile, standing crop values are low, the dead assemblages are moderate to large in size and reasonably abundant due to the slow rate of dilution by sediment.


Sign in / Sign up

Export Citation Format

Share Document